DRUMM: Dynamic Viewing of Large-scale
3D City Models on the Web

Timo Koskela, Matti Pouke, Arto Heikkinen, Toni Addo, Paula Alavesa, Timo Ojala
Center for Ubiquitous Computing
University of Oulu
Oulu, Finland
firstname.lastname@oulu.fi

Abstract—3D city models have become an important user
interface for various applications, ranging from ertertainment to
civil engineering. Today, 3D city models can also baccessed on
the web without installing any additional software, which has
significantly widened their potential audience. However, visually
accurate 3D city models are typically large in term of file size, and
hence, require ample network bandwidth for minimizing
download delays and providing a smooth user expemee. In this
paper, we introduce a method called DRUMM, which eables
dynamic resource management for viewing 3D city maals on the
web. DRUMM supports both the use of varying critera for
prioritizing the download order of 3D graphics, andthe division of
3D graphics into chunks facilitating parallel downbads that can
be suspended and later continued. The performance &fRUMM
was evaluated in terms of (1) starting delay; (2) sed network
bandwidth; and (3) the number of buildings with texures in the
view using the developed prototype implementatiorBased on the
results, DRUMM improves the usability of 3D city alications,
particularly when the network bandwidth is scarce.

Keywords— virtual reality; web3D; 3D graphics; intese
management; performance evaluation

I. INTRODUCTION

3D graphics have rapidly made their way on the dd to
the introduction of WebGL, a JavaScript API fordering 3D
graphics in a web browser without installing anyditdnal
software. Thanks to WebGL, several 3D city modeés raow
easily accessible on the web for a wide audience [B[2][3]).
During the last decade, the 3D city models have gdééned a lot
of attention in the research community. The pogtylaif the 3D
city models is at least partially explained by theérsatile
application areas. In a recent survey, almost #cases and
more than 100 applications were identified for 3§ models

[4].

3D building models utilized in interactive 3D amaltions
can be roughly categorized into three levels ofitleanging
from the highest to the lowest: (1) Building Infation Models
(BIM); (2) game-engine models; and (3) procedurgéyerated
models. BIM models are very detailed and, besiddstactural
properties, can include semantic information tkattilized in
planning and construction, such as heating, veiotilaand air
conditioning (HVAC) or electric installations. Blkhodels can
utilize very large polygon counts resulting in larfile sizes.

Game-engine models usually have no planning ortaari®on

related information while still aiming to deliveesthetically
pleasing results. While polygon counts for gamerengiodels
are lower than BIM models, they still result indarfile sizes,
which is partly due to texture image data thabigpted with the
models. Procedurally generated buildings are uggalherated
on runtime from a data source and such require nnaihi
bandwidth [5]. However, while procedural models baruseful
for analytical and planning purposes, they aresaitable for 3D
applications that require high level of aesthetics.

For acquiring the required 3D models (i.e. 3D ajagted in
a 3D application, two different approaches can dier: (1)
downloading all 3D assets prior to the use whidlypscal with
3D games; or (2) downloading 3D assets dynamicallg need
basis during runtime. First, depending on the ndtvapeed,
downloading all 3D assets prior to the use may tgke several
minutes or even hours [1]. Second, a large numb@bassets
are downloaded that are not potentially needed asahe 3D
assets are only available as long as the 3D apiplice in use
or as long as they populate the cache of the waldar. Third,
in relation to 2D Web, it should also be noted thatage load
time longer than 1 second
performance [6]. In this respect, downloading 3Dsets
dynamically on a need basis is typically more éffit and more
user-friendly approach particularly when the netmandwidth
is scarce. However, in this case, it is crucialirtelligently
manage the download order of 3D assets that tlaysiét the
rendering of 3D graphics can be minimized and acéimaser
experience can be provided [1][7].

Particularly with mobile devices, network bandwidthmot
the only limiting factor, but also the amount odghics memory
may become a performance bottleneck. If the wh@ecBy
model cannot fit into the graphics memory, the 3pl@ation
must be capable of unloading some momentarily uoitapt
3D assets from the memory before it runs out. éf ttemory
capacity is exceeded, the 3D application crasHes [1

In this paper, we present a dynamic resource mamage
method called DRUMM designed for viewing 3D city deds
on the web. DRUMM supports dividing the 3D asseit® i
chunks, which facilitates (1) downloading 3D assftsm
multiple sources in parallel; and (2) suspendingl dater
continuing the suspended downloads. It should kednthat

is already consideredr poo

DRUMM is data type agnostic, which enables use m§ a prioritization and downloading. However,

arbitrary data formats for 3D assets. For priantizthe 3D

no extensi
experiments are conducted for evaluating the paidoce of

assets, DRUMM uses Euclidian distance, view frustumtheir proposed solution.

download progress and landmark value. Howeverhas3b
asset download is independent of the 3D asseitration, any
equivalent prioritization criteria can be used. otptype of
DRUMM was implemented as part of a 3D city applmatThe
performance of DRUMM was evaluated by implementamy
automated walk-through in the 3D city applicati®uring the
walk-through, we recorded (1) the starting del&y,the used
network bandwidth as well as (3) the number ofdings with
textures in the view as a function of time. Thekathlrough was
conducted with varying settings for DRUMM and thaiiable
network bandwidth.

The rest of the paper is organized as follows.datign I,
the related work is presented. In Section lll, ¥aOulu is
introduced. VirtualOulu is an example of game-eagiased
3D city models published on the web. In Section tke
principles of DRUMM are presented in detail. In @@t V, the
experimental setup is described, and in Sectionthd,results
are summarized. Finally, Section VII concludes plaper and
provides some ideas for future work.

Il. RELATED WORK

The 3D asset delivery is closely linked with theoept of
interest management (IM) whose goal in 3D virtuatlds is to
limit the propagation of state updates only tordlevant ones
from the standpoint of each individual user [8].isTban be
conducted based on proximity [8][9], regions [16¢clusion
[11] or a combination of these [12][13]. In additicto
propagating state updates, IM methods can alsosed in
prioritizing the download order of 3D assets.

In proximity-based IM, the importance of state updais
determined based on their distance from the uddchwis also
utilized in DRUMM. In region-based IM, the enviroent is
divided into regions or tiles that can be of vasi@hapes [10].
In DRUMM, region-based IM as such is not used, regions
can be used for limiting the range of 3D asset doads. When
using regions, the rules that determine which 3Betsare
visible from every other region can also be precateqb.
However, region-based solution that rely on preaatations
are not feasible for 3D city models whose conteats change
dynamically [13]. In occlusion-based IM, state ujgdaare only
propagated from entities that are visible to they us DRUMM,
occlusion-based IM is not used as occlusion isvaot suitable
for prioritizing 3D asset downloads due to its madggmamic
nature. For instance, when a user turns aroundlyaigick, a
large number of previously occluded (and thus wetrdoaded)
3D assets may become visible simultaneously. Homvete
should be noted that using proximity or region-dald for
prioritizing 3D asset downloads does not preveningus
occlusion culling in rendering.

In [14], Barchetti et al. have examined the chajkerof
downloading a large number of 3D objects in reaktivhen the
network bandwidth is limited. They propose four opity
policies for 3D assets: field of view, distancde fsize and
priority class, which are also applied in DRUMM .their work,
they also present a modular structure for manaitie@D asset

In [15], Rahimi et al. present a context-aware fifzation
scheme for 3D asset downloading. In their soluttbry take
advantage of the game-context and transfer only ntiost
relevant 3D assets in each frame of gameplay. Cardga our
work, their focus is strongly on gaming experieand real-time
interactivity of the game. However, the presentedriization
scheme could also be applied in DRUMM if the 3y aitodels
are used for real-time gaming purposes. In theitiogation
work [7], the prioritization scheme is enhancediway that it
also takes into account the energy consumptiorbandwidth
constraints of mobile devices.

In [16], Blast is proposed that is a general caraformat
for binary data transmission for the web. The peggbbinary
format could also be utilized with DRUMM as DRUMM data
type agnostic. In similar to DRUMM, Blast supports
transmission of 3D assets in chunks. However, Rlasts not
prioritize the download order 3D assets in any way.

In [17], spatial data structures are used on tiemtchide to
increase efficiency of determining which 3D assegsvisible to
the user. Spatial data structures can also be tthesmtage in
DRUMM for prioritizing 3D assets, however, it shdile noted
that the proposed approach currently supports stdtic 3D
scenes.

For visualizing large scale CityGML models in a web
browser, a framework is proposed in [18]. For ptiing
download of 3D assets, the framework implementshaduler
that operates on three different queues: low, hagd top
priority. The top priority queue is used only fanloading 3D
assets from the memory when it is becoming fulk BB assets
to be downloaded are divided into top and low [ifjoqueues
based on a user specified strategy. In DRUMM, thmes
ideology is followed, but the priorities are caktgd separately
for geometry and textures. In the framework, the RBne is
divided into tiles of which the nearest ones aresatered the
highest priority. In comparison, DRUMM uses moresagile
set of prioritization criteria and enables usehafriks to improve
the efficiency of the download process.

. VIRTUALOULU

DRUMM was originally designed for VirtualOulu (see
Figure 1), which is a 3D city model of Oulu, Fintafl].
VirtualOulu is published on the web as an openextdnsible
general-purpose platform for developing new 3D iapfibns.
VirtualOulu uses WebGL and three.js for renderingd a
realXtend WebTundra for enabling synchronizationmialti-
user 3D applications.

In VirtualOulu, the geometry has been modelled on a
granularity of a single block. This is due to thetfthat creating
a block as a seamless entity is very challengingerwh
constructed from multiple parts. Buildings in a dloare
typically tightly connected to each other and magreshare
some parts such as stairs. The geometry in eaatk bt
presented as a JSON file of which typical size earfgom 1 to
4 MBs. For textures, each JSON file includes sdvgRd s for

texture atlases that were created for each buildirexture
atlases were deliberately created per buildingdecto ease the
modelling process, but also to avoid creating tiegeire atlases
of which downloading would delay the renderingedttires for
every building in a block. The texture atlasesdach building
are presented as PNG files of which typical sizgjea from 1
to 2 MBs. For a typical block, the total file sinétextures is
around 10 MBs. Although originally designed for tdalOulu,
DRUMM can be applied for all kinds of 3D city modeain the
web. In addition, use of DRUMM is not tied to amesific data
formats used for 3D assets.

Fig. 1. A screen shot of VirtualOulu.

IV. DYNAMIC RESOURCEMANAGEMENT METHOD (DRUMM)

A. Block and Building Prioritization

In DRUMM, the prioritization is conducted within tizones
(Rl and R2) as illustrated Figure 2Rl is determined
dynamically based on the available bandwidth, wheR? is
determined based on the available graphics menfdhgelient
device. The geometry data download always prectdesre
data download that something meaningful can bektushown
to the user. However, when the available bandwigltscarce,
R1 should be rather short that the downloading ofutexdata
can be quickly started after finishing with the getry data.
With WebGL, an application crashes if it tries teenuse the
available graphics memory [1]. TherefoR® is not only used
for limiting the downloading of 3D assets, but alsplimiting
the storage of 3D assets. When a 3D asset fakidelR2, it is
unloaded from the memory.

Fig. 2. Prioritization zones R1 and R2.

Within the prioritization zones, the priority of kdock is
determined by the score that is calculated as ghtesil sum of
different importance factors as shown in (1).

STOT

_yn ici
block = i=1®" Spiock>

whereY™ , o' = 1 andv i: S! € [0,1] (1)

In (1), Spoee denotes the overall importance of a block;
Shiock IS @n importance factarcalculated for the blockw’ is a
weight for the importance factsf,, -

In DRUMM, the importance factors used in the ptiration
of a block include, but are not limited to (a) Hdizn distance;
(b) view frustum; and (c) download progress. In, (e
importance factors for the blocks are presentech wliteir
weights.

STOT —

d bl‘l)de_dw load
ownlioa ownloa
w Shiock

distancesdistance + vievaiew
block w block T

)

When the user is moving, priority of each blockhivitR1 is
calculated at every seconds. All blocks are then sorted out
based on their overall importance. After this, geemetry data
is downloaded starting from the most important kloc

After completing the geometry data download,
prioritization is continued with buildings. In DRUM| the
importance factors used in the prioritization ofbailding
include, but are not limited to (a) Euclidian drata; (b) view
frustum; (c) download progress; (d) landmark valag3), the
importance factors for the buildings are presemt their
weights.

the

ng?ijlwding = wdlstancesg&si;‘.ézglczg + wmewsgzlfi‘ldt/iing +
downloadsdownload + wlandmarkslandmark

@ building building

©)

Next, buildings belonging to the blocks withi are sorted
out based on their importance. After this, the uextdata is
downloaded starting from the most important buidiim cases,
when all geometry and texture data has been dodetbaithin
R1, the same downloading process is continued wiRin

B. 3D Asset Download

The basic idea in DRUMM is to conduct the downlogdof
3D assets in chunks of which si@ecan vary according to the
available bandwidth, see Figure 3. Although a 3Betdalls
lower in the priority order, downloading of the aigg chunk is
always first finished. These design choices fat#it(1) the use
of multiple sources for 3D asset download; (2) shspension
and continuation of 3D asset download; and (3) mizing the
delays and the load caused by the increased numhbequests
for 3D assets. For (1), the performance of 3D adseinload
can be improved by using WebRTC (i.e. P2P) in jelralith
the client-server download [19], however, this taginot in the
scope of this paper. For (2), when the user mdles,endering
delays can be minimized as downloading can be tuick
switched to the new high priority 3D assets withimsing any
effort on partially downloaded 3D assets in casaufer decides
to double back. In the latter case, the 3D assehlbading can
be continued and completed by downloading onlyehneaining
chunks. This is particularly beneficial when the 88sets are
large and the available bandwidth is scarce. Fom{8en ample

bandwidth is availableC can be increased in order to decreaseB. 3D City Application and DRUMM

the number of requests for 3D assets.

Download
in progress
| |

—

256 KB

Downloaded

3D Asset:

1124 KB 100

256 KB 256 KB KB

C=256KB |] \ J _v_}

Not yet
downloaded

256 KB

Downloaded Downloaded

Fig. 3. 3D asset download using chunks.

In DRUMM, only a single 3D asset is downloaded =ata
The only exception to this is when the downloadiigone or
more rearmost chunks is still in progress, butetae no new
chunks to request that belong to the same 3D adsefocus is
strictly on downloading a single 3D asset at a ttha (1) the
maximum number of relevant 3D assets could be reddas
soon as possible; and (2) the number of suspenoledlidads
could be minimized. Depending on the charactesstit the
available bandwidth, DRUMM can establish upSgarallel
downloads of chunks. If the download bandwidthhef tlient is
not the limiting factor, it is beneficial to estal multiple
parallel downloads from different sources. Howeveshould
also be noted that a lar§emay result in additional delays in the
rendering when the user moves. This is becaudsedbtt that
downloading of chunks in progress is always finsished and
downloading a large number of chunks in paralletéases the
average download time per chunk. Therefore, switghio
downloading of a new 3D asset would take some timoeewith
a largeS. The detailed algorithms guiding the dynamic g@ec
of Sare not in the scope of this paper.

In DRUMM, the downloading of 3D assets using chuisks
implemented with HTTP HEAD and HTTP GET methods.
HTTP HEAD returns the header fields of the resouirte
question (i.e. 3D asset). In the response, Cohtength field
contains the total size of the 3D asset in MBssTihfiormation
is then used with HTTP GET to request for a chuakirg the
size ofC (or less if the chunk is the last one in the 38egs The
size of the chunk is indicated using the RANGE peater in the
HTTP GET request.

V. EXPERIMENTAL SETUP

A. Environment

Our testing environment consists of (1) a virtuatver
running a Apache Web Server v.2.4.23; and (2) dofap
computer (MacBook Pro i7, 16GB, Win10) with Chrom&6.0
running a 3D city application implemented with #je and the
prototype of DRUMM. For adjusting the available wetk
bandwidth, Chrome’s network throttling feature weed. We
did not use a smartphone in the experiments, asn@hAndroid
did not allow for network throttling. The web serwgas used
for hosting all the 3D assets required by the 3D application

For evaluating the performance of DRUMM, a 3D
application was implemented. For evaluation purppsee
created a consistent test scene of 25 blocksiaglia similar
block across the entire scene. While actual citylet® might
contain blocks of alternating sizes and larger aksis in
building heights, we chose to use a homogeneoysncitiel for
analysis purposes. This allowed us to evaluatertimime
performance of DRUMM with different parameters, heitit
different geometry and texture sizes affecting ¢haluation.
The geometry and texture file sizes were adaptedn fr
VirtualOulu presented in Section Il

Download queue updating Parallel chunk downloading

Add asset to
scene

Schedule
downloads

\%

Run every t
seconds

|

Prioritize
blocks

l

Prioritize
textures

Block_234

Block_352

Block_194
Texture_128
Texture_221
Texture_158

Download
chunk

b
<!

Fig. 4. Software architecture of the DRUMM prototype.

Handle
completed
chunk

The implementation of DRUMM consists of two maios:
download queue updating (Figure 4: left) and parathunk
downloading (Figure 4: right). These loops run paledently,
communicating via the download queue. The downtpaslie is
updated everyseconds based on the asset prioritization criteria
described in Section IV A. The chunk download scited
maintainsS simultaneous chunk downloads as long as there are
3D assets to download in the download queue. When t
scheduler starts a new chunk download, it alwalgstsethe first
not yet started chunk from the first 3D asset & download
gueue. When the last remaining chunk of a certBiraSset is
downloaded, the 3D asset is added to the scene.

The prototype implementation of DRUMM currently
supports the use of arbitrary chunk size, downlsagpension
and continuation as well as using Euclidean digtanview
frustum and download progress as means for paongithe
download order of 3D assets for both blocks anttings. For
the prototype, we also implemented a simple algoritfor
predicting the users’ movement. When the user ihermove,
Euclidian distance is calculated from a spot thatinits in front
of the user’s true position.

C. Test Cases

For evaluating the performance of DRUMM, we conddct
an automated walk-through (see Figure 5 and a vieearding
from a bird’'s eye view with DRUMM and 20Mb/s networ
speed https://youtu.be/VkTPnOmMu9o in the 3D city
application with three different test cases (TG@s).C1, we used
DRUMM with all available features. In TC2, we udeRUMM
without chunks and only with the plain Euclidiastdince based
prioritization as a benchmark [7]. In TC3, no DRUMMs used
(i.e. all 3D assets are downloaded in the beginnWgth each
configuration, three emulated networked speeds0p20 and

50 Mb/s were used. For each of the nine test cisestarting
delay and the overall use of the network bandwidtre

recorded. In case of (1) and (2), also a video wegured that
was used for drawing a timeline showing the nunatbéextured

buildings in the view at evertyseconds.

Fig. 5. An automated walk-through in the 3D city applicatio

The parameters used for DRUMM are listed in Tablinl
the experimentd2 was set to be the sameRisas the used 3D
scene was small enough to fit all 3D assets irdartamory. We
experimented with various values & and noticed that

increasingS beyond three did not improve the performance in

our test case when downloading 3D assets only fiosingle
source (i.e. the web server). When downloading frouttiple

well for no DRUMM (TC3) with the three different tweorks
speeds. The measured starting delays are showabie P. It
should be noted that having chunks and downloapesision
has none or a marginal effect on the performandeRIIMM
in this test case.

TABLE II. STARTING DELAY
10Mb/s | 20Mbl/s 50Mbl/s
TC1/TC2 (DRUMM) 2s 1.5s 1s
TC3 (no DRUMM) | 4min 35s| 2min 17§ 55s

It can be clearly seen in Table 2 that the stardieigy with
a 3D city model consisting of 25 visually detailBlibcks is
intolerable if no dynamic downloading of 3D assstssed. In
case of DRUMM, the starting delay constitutes otihe
download delay for the first JSON file containirtge tblock
geometry and the links to building textures.

B. Amounts of Downloaded Data

The total amounts of downloaded data are presamfieable
3 for all test cases with the three different neknspeeds.

TABLE Ill. AMOUNTS OFDOWNLOADED DATA
10Mb/s | 20Mb/s | 50Mb/s
TC1 203MB | 269MB| 292MB
TC2 192MB | 268MB| 290MB
TC3 (no DRUMM) 329MB| 329MB| 329MB|

It can be seen in Table 3 that even with DRUMM se,u
large amounts 3D assets are eventually downloduntever,
without the user needing to wait for minutes befangthing

sources in parallel, the value $tan have a significant impact meaningful is drawn on the screen. Table 3 alseshbat the

on the performance. For the test cases TC1 and th€Xalues

3D asset downloading is slightly more efficienttwéhunks (see

of weight factorsw are also shown in Table 1. For TC1, theTC1) particularly when the network bandwidth isslesnple.

values were determined experimentally.

TABLE I. PARAMETERS FORDRUMM IN TC1AND TC2
Paramete Value
R1 (prioritization zone 20C
R2 (prioritization zone 20C
p (Euclidiandistance predictiol 5C
t (priority calculation interva 1s
C (chunk size 256KB
S (maximum# of simultaneou downloads 3
Weight factor TC1 | TC2
w¥sace(weight factor for Euclidian distanc 0.5 1
" (weight factor for view frustun 0.3 0
wdownioad — (weight factor for download 0.2 0
progress

VI. EXPERIMENTAL RESULTS

A. Sarting Delay

With the starting delay, we mean the time thatuber has
to wait before anything meaningful is shown ongbeeen. The
starting delays were measured for DRUMM (TC1 an@)T&s

This is due to the fact that the use of parallePTé@nnections
(used with HTTP) improve the overall throughputat@ertain
extent [20]. The number of parallel TCP connectirould,

however, be carefully chosen not to cause networigestion,
which may on the contrary decrease the overalljinput.

C. Texture Visibility

In Figures 6, 7 and 8, the number of textured Ingjsl in the
view are presented for TC1 and TC2 with differeatwork
speeds as a function of time. In general, it carsd®n in the
figures that 3D asset prioritization performs heitteTC1. This
is due to both the more intelligent prioritizatioriteria and the
capability to suspend and continue downloading Dfa3sets.
The performance improvement, however, is clearlyreno
significant when the available bandwidth is scdeee Figures
6 and 7). Particularly with the network speed df1bgs, the 3D
application is primarily capable of downloading yithose 3D
assets that are directly visible to the user. Thaonkchunking,
downloading of 3D assets having fallen lower ingihierity can
be suspended and later continued when the usededetd
double back. This way, the scarce available bartiwidn be
more efficiently utilized.

DRUMM: 10Mb/s

20

16

0
0O 10 20 30 40 50 60 70 80 S0 100 110 120 130 140 150

g TCl emguTC2

Fig. 6. The number of textured buildings in the view asiracfion of time
(DRUMM: 10Mb/s).

DRUMM: 20Mb/s

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

=genTCl emgueTC2

Fig. 7. The number of textured buildings in the view asiracfion of time
(DRUMM: 20Mb/s).

With the network speed of 50Mb/s, the differencesveen
TC1 and TC2 are less significant as the 3D apjiicas capable
of downloading all 3D assets in proximity at a hggeed. The
performance in TC2 falls behind TC1 practically yoim the
beginning of the walk-through when there is a langmber of
3D assets to be prioritized and downloaded. Indtes parts of
the walk-through the small difference between T@d &C2 is
due to the prediction feature of the Euclidianatise calculation
that enables downloading of 3D assets that aredudway in
the direction the user is moving to.

DRUMM: 50Mb/s

20
16

12

0 10 20 30 40 S0 60 70 80 S0 100 110 120 130 140 150

=genTC]l w=gu=TC2

Fig. 8. The number of textured buildings in the view asiracfion of time
(DRUMM: 50Mb/s).

VII. CONCLUSIONS

In this paper, we present a dynamic resource mamafe
method called DRUMM designed for viewing 3D city deds
on the web. DRUMM enables dynamic downloading of 3D
assets during runtime, which exempts the user fomigwaiting
times when starting the 3D application. DRUMM igad&ype
agnostic, and therefore, can be used with any typ8B assets.
In DRUMM, the order of 3D asset downloading carstered
using various importance factors. DRUMM also supgpor
dividing 3D assets into chunks enabling (1) paratevnloads
from multiple different sources; and (2) suspensiand
continuation of already started downloads. Based thom
experiment results, DRUMM improves the usability3af city
applications particularly when network bandwidtisdsirce.

Although the current prototype implementation of INAM
is fully functional, it is still lacking some imptamt features. In
the future, we will implement support for WebRTCedpable
P2P-assisted 3D assets downloading, which willdgsthe true
value of dividing 3D assets into chunks. Second; fo
downloading texture files, use of variable sizedrits will also
be examined. In this case, the idea is to ass@nitle of chunks
according to the size of texture files, so thatrtdewnloading
is efficient, but also suspending their downloapassible at an
early stage. Third, we will examine how differentiatjty
variants for 3D assets (i.e. LODs) could be usddRtUMM to
enable far distance real-time rendering for laiex The most
straightforward approach is to define additiondiwaR within
both Rl andR2 for each LOD. The download order for each
LOD would be thus determined according to the prityi to
the user. Fourth, we will evaluate the performasicBRUMM
with non-uniform city plans (e.g. with the compl&tigtualOulu
3D city model [1]). Finally, we will also performomparative
evaluation with other state-of-the art methods,hsas Clip
Mapping [21].

ACKNOWLEDGMENT

The Strategic Research Council at the Academy &fd
is acknowledged for financial support of the COMB ibject
(293389). This work has also been supported bZ&i2IST3D
project (268905) funded by the Academy of Finlamd ¢he
6Aika: Open City Model as Open Innovation Platfgonoject
(A71143) funded by the ERDF and the City of Ouldemnthe
Six City Strategy program.

REFERENCES

[1] T. Alatalo, T. Koskela, M. Pouke, P. Alavesa, an®fala, “VirtualOulu:
collaborative, immersive and extensible 3D city ®lodn the web,” in
21st International Conference on Web3D Technologiel{3D '16),
2016, pp. 95-103.

[2] T. Kolbe, “3D City Model of New York City.” [Online Available:
https://www.gis.bgu.tum.de/en/projects/new-york-@t/. [Accessed:
23-Nov-2016].

[3] T. Kolbe, “Semantic 3D City Model of Berlin.” [Omle]. Available:

http://www.3dcitydb.net/3dcitydb/VisualizationBetli [Accessed: 23-
Nov-2016].

[4] F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova,daA. Coltekin,
“Applications of 3D City Models: State of the AreRRew,” ISPRS Int. J.
Geo-Information, vol. 4, no. 4, pp. 2842-2889, 2015

(5]

(6]

(7]

8l

19

[10]

[11]

[12]

[13]

J.-P. Virtanen, H. Hyyppa, A. Kdmarainen, T. Hotist, M. Vastaranta,
and J. Hyypp4, “Intelligent Open Data 3D Maps ©adlaborative Virtual
World,” ISPRS Int. J. Geo-Inf, vol. 4, pp. 837-82D15.

H. Bakri, C. Allison, A. Miller, and 1. Oliver, “Mitual Worlds and the 3D
Web -- Time for Convergence?,” in Immersive LeagniResearch
Network: Second International Conference, iLRN 2@&dhta Barbara,
CA, USA, June 27 -- July 1, 2016 Proceedings, @séi, L. Morgado,
J. Pirker, D. Beck, J. Richter, and C. Gltl, Edhaf: Springer
International Publishing, 2016, pp. 29-42.

M. Hemmati, S. Shirmohammadi, H. Rahimi, and Alighar Nazari
Shirehjini, “Optimized Game Object Selection ante&ting for Mobile
Devices,” Adv. Inf. Technol. Appl. Comput., vol. Ap. 144-149, 2012.

H. Liu, M. Bowman, and F. Chang, “Survey of statelging in virtual
worlds,” ACM Comput. Surv., vol. 44, no. 4, pp. 5:2012.

G. Morgan and F. Lu, “Predictive interest managemén approach to
managing message dissemination for distributedalignvironments,” in
1st International Workshop on Interactive Rich MedContent
Production: Architectures, Technologies, ApplicaipTools, 2003.

J. Boulanger, “Interest Management for Massivelitilayer Games,”
McGill University, 2006.

J. Boulanger, J. Kienzle, and C. Verbrugge, “Conmgarinterest
management algorithms for massively multiplayer gsyhWork. Netw.
Syst. Support Games, p. 6, 2006.

B. Hariri, S. Shirmohammadi, and M. R. Pakravandistributed interest
management scheme for massively multi-user virm@ironments,” in
VECIMS 2008 - IEEE Conference on Virtual EnvironrteertHuman-
Computer Interfaces and Measurement Systems Piiagse@008, pp.
111-115.

K. Vatjus-Anttila, T. Koskela, S. Hickey, and J. tiys-Anttila,
“Occlusion Based Message Dissemination Method itwiikked Virtual
Environments,” in Seventh International ConfereaneNext Generation
Mobile Apps, Services and Technologies, 2013, gp49.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

U. Barchetti, A. Bucciero, S. S. Sabato, and L. M\#i, “Loading and
rendering optimization for networked virtual worftén Proceedings -
2007 International Conference on Cyberworlds, CW2I07, pp. 265—
272.

H. Rahimi, A. A. Nazari Shirehjini, and S. Shirmefaadi, “Activity-
centric streaming of virtual environments and gatoesiobile devices,”
HAVE 2011 - IEEE Int. Symp. Haptic Audio-v. Enviro®ames, Proc.,
pp. 45-50, 2011.

J. Sutter, K. Sons, and P. Slusallek, “Blast: AéBjnLarge Structured
Transmission Format for the Web,” in 19th Interoatl ACM
Conference on 3D Web Technologies, 2014, pp. 45-52.

C. Stein, M. Limper, and A. Kuijper, “Spatial dasiructures for
accelerated 3D visibility computation to enablgémodel visualization
on the web,” in 19th International ACM Conferenca 8D Web
Technologies, 2014, pp. 53-61.

J. Galllard et al., “Urban Data Visualisation invab browser,” Web3D
"15 Proc. 20th Int. Conf. 3D Web Technol., 2015.

T. Koskela, A. Heikkinen, E. Harjula, M. LevantmdaM. Ylianttila,

“RADE: Resource-aware distributed browser-to-braw8® graphics
delivery in the web,” in 2015 IEEE 11th Interna@rConference on
Wireless and Mobile Computing, Networking and Cominations,
WiMob 2015, 2015, pp. 500-508.

T. J. Hacker, B. D. Athey, and B. Noble, “The eneehd performance
effects of parallel TCP sockets on a lossy wideranetwork,” in

Proceedings - International Parallel and Distridut€rocessing
Symposium, IPDPS 2002, 2002, pp. 434—-443.

A. Asirvatham and H. Hoppe, “Terrain rendering gsiGPU-based
geometry clipmaps,” in GPU Gems 2: Programming Tegres for
High-Performance Graphics and General-Purpose Ctatiguo, 2005,
pp. 27-46.

