
DRUMM: Dynamic Viewing of Large-scale

3D City Models on the Web

Timo Koskela, Matti Pouke, Arto Heikkinen, Toni Alatalo, Paula Alavesa, Timo Ojala
Center for Ubiquitous Computing

University of Oulu
Oulu, Finland

firstname.lastname@oulu.fi

Abstract—3D city models have become an important user
interface for various applications, ranging from entertainment to
civil engineering. Today, 3D city models can also be accessed on
the web without installing any additional software, which has
significantly widened their potential audience. However, visually
accurate 3D city models are typically large in terms of file size, and
hence, require ample network bandwidth for minimizing
download delays and providing a smooth user experience. In this
paper, we introduce a method called DRUMM, which enables
dynamic resource management for viewing 3D city models on the
web. DRUMM supports both the use of varying criteria for
prioritizing the download order of 3D graphics, and the division of
3D graphics into chunks facilitating parallel downloads that can
be suspended and later continued. The performance of DRUMM
was evaluated in terms of (1) starting delay; (2) used network
bandwidth; and (3) the number of buildings with textures in the
view using the developed prototype implementation. Based on the
results, DRUMM improves the usability of 3D city applications,
particularly when the network bandwidth is scarce.

Keywords— virtual reality; web3D; 3D graphics; interest
management; performance evaluation

I. INTRODUCTION

3D graphics have rapidly made their way on the web due to
the introduction of WebGL, a JavaScript API for rendering 3D
graphics in a web browser without installing any additional
software. Thanks to WebGL, several 3D city models are now
easily accessible on the web for a wide audience (e.g. [1][2][3]).
During the last decade, the 3D city models have also gained a lot
of attention in the research community. The popularity of the 3D
city models is at least partially explained by their versatile
application areas. In a recent survey, almost 30 use cases and
more than 100 applications were identified for 3D city models
[4].

3D building models utilized in interactive 3D applications
can be roughly categorized into three levels of detail ranging
from the highest to the lowest: (1) Building Information Models
(BIM); (2) game-engine models; and (3) procedurally generated
models. BIM models are very detailed and, besides architectural
properties, can include semantic information that is utilized in
planning and construction, such as heating, ventilation and air
conditioning (HVAC) or electric installations. BIM models can
utilize very large polygon counts resulting in large file sizes.

Game-engine models usually have no planning or construction
related information while still aiming to deliver aesthetically
pleasing results. While polygon counts for game engine models
are lower than BIM models, they still result in large file sizes,
which is partly due to texture image data that is coupled with the
models. Procedurally generated buildings are usually generated
on runtime from a data source and such require minimal
bandwidth [5]. However, while procedural models can be useful
for analytical and planning purposes, they are not suitable for 3D
applications that require high level of aesthetics.

For acquiring the required 3D models (i.e. 3D assets) used in
a 3D application, two different approaches can be taken: (1)
downloading all 3D assets prior to the use which is typical with
3D games; or (2) downloading 3D assets dynamically on a need
basis during runtime. First, depending on the network speed,
downloading all 3D assets prior to the use may take up to several
minutes or even hours [1]. Second, a large number of 3D assets
are downloaded that are not potentially needed at all as the 3D
assets are only available as long as the 3D application is in use
or as long as they populate the cache of the web browser. Third,
in relation to 2D Web, it should also be noted that a page load
time longer than 1 second is already considered poor
performance [6]. In this respect, downloading 3D assets
dynamically on a need basis is typically more efficient and more
user-friendly approach particularly when the network bandwidth
is scarce. However, in this case, it is crucial to intelligently
manage the download order of 3D assets that the delays in the
rendering of 3D graphics can be minimized and a smooth user
experience can be provided [1][7].

Particularly with mobile devices, network bandwidth is not
the only limiting factor, but also the amount of graphics memory
may become a performance bottleneck. If the whole 3D city
model cannot fit into the graphics memory, the 3D application
must be capable of unloading some momentarily unimportant
3D assets from the memory before it runs out. If the memory
capacity is exceeded, the 3D application crashes [1].

In this paper, we present a dynamic resource management
method called DRUMM designed for viewing 3D city models
on the web. DRUMM supports dividing the 3D assets into
chunks, which facilitates (1) downloading 3D assets from
multiple sources in parallel; and (2) suspending and later
continuing the suspended downloads. It should be noted that

DRUMM is data type agnostic, which enables use of any
arbitrary data formats for 3D assets. For prioritizing the 3D
assets, DRUMM uses Euclidian distance, view frustum,
download progress and landmark value. However, as the 3D
asset download is independent of the 3D asset prioritization, any
equivalent prioritization criteria can be used. A prototype of
DRUMM was implemented as part of a 3D city application. The
performance of DRUMM was evaluated by implementing an
automated walk-through in the 3D city application. During the
walk-through, we recorded (1) the starting delay, (2) the used
network bandwidth as well as (3) the number of buildings with
textures in the view as a function of time. The walk-through was
conducted with varying settings for DRUMM and the available
network bandwidth.

The rest of the paper is organized as follows. In Section II,
the related work is presented. In Section III, VirtualOulu is
introduced. VirtualOulu is an example of game-engine-based
3D city models published on the web. In Section IV, the
principles of DRUMM are presented in detail. In Section V, the
experimental setup is described, and in Section VI, the results
are summarized. Finally, Section VII concludes the paper and
provides some ideas for future work.

II. RELATED WORK

The 3D asset delivery is closely linked with the concept of
interest management (IM) whose goal in 3D virtual worlds is to
limit the propagation of state updates only to the relevant ones
from the standpoint of each individual user [8]. This can be
conducted based on proximity [8][9], regions [10], occlusion
[11] or a combination of these [12][13]. In addition to
propagating state updates, IM methods can also be used in
prioritizing the download order of 3D assets.

In proximity-based IM, the importance of state updates is
determined based on their distance from the user, which is also
utilized in DRUMM. In region-based IM, the environment is
divided into regions or tiles that can be of various shapes [10].
In DRUMM, region-based IM as such is not used, but regions
can be used for limiting the range of 3D asset downloads. When
using regions, the rules that determine which 3D assets are
visible from every other region can also be precomputed.
However, region-based solution that rely on precomputations
are not feasible for 3D city models whose contents can change
dynamically [13]. In occlusion-based IM, state updates are only
propagated from entities that are visible to the user. In DRUMM,
occlusion-based IM is not used as occlusion is not very suitable
for prioritizing 3D asset downloads due to its more dynamic
nature. For instance, when a user turns around a city block, a
large number of previously occluded (and thus not downloaded)
3D assets may become visible simultaneously. However, it
should be noted that using proximity or region-based IM for
prioritizing 3D asset downloads does not prevent using
occlusion culling in rendering.

In [14], Barchetti et al. have examined the challenge of
downloading a large number of 3D objects in real-time when the
network bandwidth is limited. They propose four priority
policies for 3D assets: field of view, distance, file size and
priority class, which are also applied in DRUMM. In their work,
they also present a modular structure for managing the 3D asset

prioritization and downloading. However, no extensive
experiments are conducted for evaluating the performance of
their proposed solution.

In [15], Rahimi et al. present a context-aware prioritization
scheme for 3D asset downloading. In their solution, they take
advantage of the game-context and transfer only the most
relevant 3D assets in each frame of gameplay. Compared to our
work, their focus is strongly on gaming experience and real-time
interactivity of the game. However, the presented prioritization
scheme could also be applied in DRUMM if the 3D city models
are used for real-time gaming purposes. In their continuation
work [7], the prioritization scheme is enhanced in a way that it
also takes into account the energy consumption and bandwidth
constraints of mobile devices.

In [16], Blast is proposed that is a general container format
for binary data transmission for the web. The proposed binary
format could also be utilized with DRUMM as DRUMM is data
type agnostic. In similar to DRUMM, Blast supports
transmission of 3D assets in chunks. However, Blast does not
prioritize the download order 3D assets in any way.

In [17], spatial data structures are used on the client side to
increase efficiency of determining which 3D assets are visible to
the user. Spatial data structures can also be taken advantage in
DRUMM for prioritizing 3D assets, however, it should be noted
that the proposed approach currently supports only static 3D
scenes.

For visualizing large scale CityGML models in a web
browser, a framework is proposed in [18]. For prioritizing
download of 3D assets, the framework implements a scheduler
that operates on three different queues: low, high and top
priority. The top priority queue is used only for unloading 3D
assets from the memory when it is becoming full. The 3D assets
to be downloaded are divided into top and low priority queues
based on a user specified strategy. In DRUMM, the same
ideology is followed, but the priorities are calculated separately
for geometry and textures. In the framework, the 3D scene is
divided into tiles of which the nearest ones are considered the
highest priority. In comparison, DRUMM uses more versatile
set of prioritization criteria and enables use of chunks to improve
the efficiency of the download process.

III. V IRTUALOULU

DRUMM was originally designed for VirtualOulu (see
Figure 1), which is a 3D city model of Oulu, Finland [1].
VirtualOulu is published on the web as an open and extensible
general-purpose platform for developing new 3D applications.
VirtualOulu uses WebGL and three.js for rendering and
realXtend WebTundra for enabling synchronization in multi-
user 3D applications.

In VirtualOulu, the geometry has been modelled on a
granularity of a single block. This is due to the fact that creating
a block as a seamless entity is very challenging when
constructed from multiple parts. Buildings in a block are
typically tightly connected to each other and may even share
some parts such as stairs. The geometry in each block is
presented as a JSON file of which typical size ranges from 1 to
4 MBs. For textures, each JSON file includes several URLs for

texture atlases that were created for each building. Texture
atlases were deliberately created per building in order to ease the
modelling process, but also to avoid creating huge texture atlases
of which downloading would delay the rendering of textures for
every building in a block. The texture atlases for each building
are presented as PNG files of which typical size ranges from 1
to 2 MBs. For a typical block, the total file size of textures is
around 10 MBs. Although originally designed for VirtualOulu,
DRUMM can be applied for all kinds of 3D city models on the
web. In addition, use of DRUMM is not tied to any specific data
formats used for 3D assets.

Fig. 1. A screen shot of VirtualOulu.

IV. DYNAMIC RESOURCE MANAGEMENT METHOD (DRUMM)

A. Block and Building Prioritization

In DRUMM, the prioritization is conducted within two zones
(R1 and R2) as illustrated Figure 2. R1 is determined
dynamically based on the available bandwidth, whereas R2 is
determined based on the available graphics memory of the client
device. The geometry data download always precedes texture
data download that something meaningful can be quickly shown
to the user. However, when the available bandwidth is scarce,
R1 should be rather short that the downloading of texture data
can be quickly started after finishing with the geometry data.
With WebGL, an application crashes if it tries to overuse the
available graphics memory [1]. Therefore, R2 is not only used
for limiting the downloading of 3D assets, but also for limiting
the storage of 3D assets. When a 3D asset falls outside R2, it is
unloaded from the memory.

Fig. 2. Prioritization zones R1 and R2.

Within the prioritization zones, the priority of a block is
determined by the score that is calculated as a weighted sum of
different importance factors as shown in (1).

������
��� 		∑ �������

�
�� ,

where ∑ � 	 1�
�� 	and ∀	�:	��

 ∈ �0,1� (1)

In (1), ������
��� denotes the overall importance of a block;

������
 is an importance factor i calculated for the block. � 	is a

weight for the importance factor	������
 .

In DRUMM, the importance factors used in the prioritization
of a block include, but are not limited to (a) Euclidian distance;
(b) view frustum; and (c) download progress. In (2), the
importance factors for the blocks are presented with their
weights.

������
��� 	 ��������������

������� �	� �!������
 �! 	�

���!�����������
��!����� (2)

When the user is moving, priority of each block within R1 is
calculated at every t seconds. All blocks are then sorted out
based on their overall importance. After this, the geometry data
is downloaded starting from the most important block.

After completing the geometry data download, the
prioritization is continued with buildings. In DRUMM, the
importance factors used in the prioritization of a building
include, but are not limited to (a) Euclidian distance; (b) view
frustum; (c) download progress; (d) landmark value. In (3), the
importance factors for the buildings are presented with their
weights.

��"���#
��� 	 ����������"���#

������� �	� �!��"���#
 �! 	�

���!�������"���#
��!����� ������$�%���"���#

����$�%� (3)

Next, buildings belonging to the blocks within R1 are sorted
out based on their importance. After this, the texture data is
downloaded starting from the most important building. In cases,
when all geometry and texture data has been downloaded within
R1, the same downloading process is continued within R2.

B. 3D Asset Download

The basic idea in DRUMM is to conduct the downloading of
3D assets in chunks of which size C can vary according to the
available bandwidth, see Figure 3. Although a 3D asset falls
lower in the priority order, downloading of the ongoing chunk is
always first finished. These design choices facilitate (1) the use
of multiple sources for 3D asset download; (2) the suspension
and continuation of 3D asset download; and (3) minimizing the
delays and the load caused by the increased number of requests
for 3D assets. For (1), the performance of 3D asset download
can be improved by using WebRTC (i.e. P2P) in parallel with
the client-server download [19], however, this topic is not in the
scope of this paper. For (2), when the user moves, the rendering
delays can be minimized as downloading can be quickly
switched to the new high priority 3D assets without losing any
effort on partially downloaded 3D assets in case the user decides
to double back. In the latter case, the 3D asset downloading can
be continued and completed by downloading only the remaining
chunks. This is particularly beneficial when the 3D assets are
large and the available bandwidth is scarce. For (3), when ample

bandwidth is available, C can be increased in order to decrease
the number of requests for 3D assets.

Fig. 3. 3D asset download using chunks.

In DRUMM, only a single 3D asset is downloaded at once.
The only exception to this is when the downloading of one or
more rearmost chunks is still in progress, but there are no new
chunks to request that belong to the same 3D asset. The focus is
strictly on downloading a single 3D asset at a time that (1) the
maximum number of relevant 3D assets could be rendered as
soon as possible; and (2) the number of suspended downloads
could be minimized. Depending on the characteristics of the
available bandwidth, DRUMM can establish up to S parallel
downloads of chunks. If the download bandwidth of the client is
not the limiting factor, it is beneficial to establish multiple
parallel downloads from different sources. However, it should
also be noted that a large S may result in additional delays in the
rendering when the user moves. This is because of the fact that
downloading of chunks in progress is always first finished and
downloading a large number of chunks in parallel increases the
average download time per chunk. Therefore, switching to
downloading of a new 3D asset would take some more time with
a large S. The detailed algorithms guiding the dynamic selection
of S are not in the scope of this paper.

In DRUMM, the downloading of 3D assets using chunks is
implemented with HTTP HEAD and HTTP GET methods.
HTTP HEAD returns the header fields of the resource in
question (i.e. 3D asset). In the response, Content-Length field
contains the total size of the 3D asset in MBs. This information
is then used with HTTP GET to request for a chunk having the
size of C (or less if the chunk is the last one in the 3D asset). The
size of the chunk is indicated using the RANGE parameter in the
HTTP GET request.

V. EXPERIMENTAL SETUP

A. Environment

Our testing environment consists of (1) a virtual server
running a Apache Web Server v.2.4.23; and (2) a laptop
computer (MacBook Pro i7, 16GB, Win10) with Chrome v.56.0
running a 3D city application implemented with three.js and the
prototype of DRUMM. For adjusting the available network
bandwidth, Chrome’s network throttling feature was used. We
did not use a smartphone in the experiments, as Chrome Android
did not allow for network throttling. The web server was used
for hosting all the 3D assets required by the 3D city application

B. 3D City Application and DRUMM

For evaluating the performance of DRUMM, a 3D
application was implemented. For evaluation purposes, we
created a consistent test scene of 25 blocks utilizing a similar
block across the entire scene. While actual city models might
contain blocks of alternating sizes and larger deviations in
building heights, we chose to use a homogeneous city model for
analysis purposes. This allowed us to evaluate the runtime
performance of DRUMM with different parameters, without
different geometry and texture sizes affecting the evaluation.
The geometry and texture file sizes were adapted from
VirtualOulu presented in Section III.

Fig. 4. Software architecture of the DRUMM prototype.

The implementation of DRUMM consists of two main loops:
download queue updating (Figure 4: left) and parallel chunk
downloading (Figure 4: right). These loops run independently,
communicating via the download queue. The download queue is
updated every t seconds based on the asset prioritization criteria
described in Section IV A. The chunk download scheduler
maintains S simultaneous chunk downloads as long as there are
3D assets to download in the download queue. When the
scheduler starts a new chunk download, it always selects the first
not yet started chunk from the first 3D asset in the download
queue. When the last remaining chunk of a certain 3D asset is
downloaded, the 3D asset is added to the scene.

The prototype implementation of DRUMM currently
supports the use of arbitrary chunk size, download suspension
and continuation as well as using Euclidean distance, view
frustum and download progress as means for prioritizing the
download order of 3D assets for both blocks and buildings. For
the prototype, we also implemented a simple algorithm for
predicting the users’ movement. When the user is on the move,
Euclidian distance is calculated from a spot that is p units in front
of the user’s true position.

C. Test Cases

For evaluating the performance of DRUMM, we conducted
an automated walk-through (see Figure 5 and a video recording
from a bird’s eye view with DRUMM and 20Mb/s network
speed https://youtu.be/vkTPnQmMu9o) in the 3D city
application with three different test cases (TCs). In TC1, we used
DRUMM with all available features. In TC2, we used DRUMM
without chunks and only with the plain Euclidian distance based
prioritization as a benchmark [7]. In TC3, no DRUMM was used
(i.e. all 3D assets are downloaded in the beginning). With each
configuration, three emulated networked speeds of 10, 20 and

50 Mb/s were used. For each of the nine test cases, the starting
delay and the overall use of the network bandwidth were
recorded. In case of (1) and (2), also a video was captured that
was used for drawing a timeline showing the number of textured
buildings in the view at every t seconds.

Fig. 5. An automated walk-through in the 3D city application.

The parameters used for DRUMM are listed in Table 1. In
the experiments, R2 was set to be the same as R1 as the used 3D
scene was small enough to fit all 3D assets into the memory. We
experimented with various values of S, and noticed that
increasing S beyond three did not improve the performance in
our test case when downloading 3D assets only from a single
source (i.e. the web server). When downloading from multiple
sources in parallel, the value of S can have a significant impact
on the performance. For the test cases TC1 and TC2, the values
of weight factors ω are also shown in Table 1. For TC1, the
values were determined experimentally.

TABLE I. PARAMETERS FOR DRUMM IN TC1 AND TC2

Parameter Value
R1 (prioritization zone) 200
R2 (prioritization zone) 200
p (Euclidian distance prediction) 50
t (priority calculation interval) 1s
C (chunk size) 256KB
S (maximum # of simultaneous downloads) 3

Weight factors TC1 TC2
ω

distance(weight factor for Euclidian distance) 0.5 1
ω

view (weight factor for view frustum) 0.3 0
ω

download (weight factor for download
progress)

0.2 0

VI. EXPERIMENTAL RESULTS

A. Starting Delay

With the starting delay, we mean the time that the user has
to wait before anything meaningful is shown on the screen. The
starting delays were measured for DRUMM (TC1 and TC2) as

well for no DRUMM (TC3) with the three different networks
speeds. The measured starting delays are shown in Table 2. It
should be noted that having chunks and download suspension
has none or a marginal effect on the performance of DRUMM
in this test case.

TABLE II. STARTING DELAY

 10Mb/s 20Mb/s 50Mb/s
TC1/TC2 (DRUMM) 2s 1.5s 1s
TC3 (no DRUMM) 4min 35s 2min 17s 55s

It can be clearly seen in Table 2 that the starting delay with

a 3D city model consisting of 25 visually detailed blocks is
intolerable if no dynamic downloading of 3D assets is used. In
case of DRUMM, the starting delay constitutes only the
download delay for the first JSON file containing the block
geometry and the links to building textures.

B. Amounts of Downloaded Data

The total amounts of downloaded data are presented in Table
3 for all test cases with the three different network speeds.

TABLE III. AMOUNTS OF DOWNLOADED DATA

 10Mb/s 20Mb/s 50Mb/s
TC1 203MB 269MB 292MB
TC2 192MB 268MB 290MB
TC3 (no DRUMM) 329MB 329MB 329MB

It can be seen in Table 3 that even with DRUMM in use,

large amounts 3D assets are eventually downloaded, however,
without the user needing to wait for minutes before anything
meaningful is drawn on the screen. Table 3 also shows that the
3D asset downloading is slightly more efficient with chunks (see
TC1) particularly when the network bandwidth is less ample.
This is due to the fact that the use of parallel TCP connections
(used with HTTP) improve the overall throughput to a certain
extent [20]. The number of parallel TCP connection should,
however, be carefully chosen not to cause network congestion,
which may on the contrary decrease the overall throughput.

C. Texture Visibility

In Figures 6, 7 and 8, the number of textured buildings in the
view are presented for TC1 and TC2 with different network
speeds as a function of time. In general, it can be seen in the
figures that 3D asset prioritization performs better in TC1. This
is due to both the more intelligent prioritization criteria and the
capability to suspend and continue downloading of 3D assets.
The performance improvement, however, is clearly more
significant when the available bandwidth is scarce (see Figures
6 and 7). Particularly with the network speed of 10Mb/s, the 3D
application is primarily capable of downloading only those 3D
assets that are directly visible to the user. Thanks to chunking,
downloading of 3D assets having fallen lower in the priority can
be suspended and later continued when the user decides to
double back. This way, the scarce available bandwidth can be
more efficiently utilized.

Fig. 6. The number of textured buildings in the view as a function of time

(DRUMM: 10Mb/s).

Fig. 7. The number of textured buildings in the view as a function of time
(DRUMM: 20Mb/s).

With the network speed of 50Mb/s, the differences between
TC1 and TC2 are less significant as the 3D application is capable
of downloading all 3D assets in proximity at a high speed. The
performance in TC2 falls behind TC1 practically only in the
beginning of the walk-through when there is a large number of
3D assets to be prioritized and downloaded. In the later parts of
the walk-through the small difference between TC1 and TC2 is
due to the prediction feature of the Euclidian distance calculation
that enables downloading of 3D assets that are further away in
the direction the user is moving to.

Fig. 8. The number of textured buildings in the view as a function of time
(DRUMM: 50Mb/s).

VII. CONCLUSIONS

In this paper, we present a dynamic resource management
method called DRUMM designed for viewing 3D city models
on the web. DRUMM enables dynamic downloading of 3D
assets during runtime, which exempts the user from long waiting
times when starting the 3D application. DRUMM is data type
agnostic, and therefore, can be used with any types of 3D assets.
In DRUMM, the order of 3D asset downloading can be steered
using various importance factors. DRUMM also supports
dividing 3D assets into chunks enabling (1) parallel downloads
from multiple different sources; and (2) suspension and
continuation of already started downloads. Based on the
experiment results, DRUMM improves the usability of 3D city
applications particularly when network bandwidth is scarce.

Although the current prototype implementation of DRUMM
is fully functional, it is still lacking some important features. In
the future, we will implement support for WebRTC to enable
P2P-assisted 3D assets downloading, which will harness the true
value of dividing 3D assets into chunks. Second, for
downloading texture files, use of variable sized chunks will also
be examined. In this case, the idea is to assign the size of chunks
according to the size of texture files, so that their downloading
is efficient, but also suspending their download is possible at an
early stage. Third, we will examine how different quality
variants for 3D assets (i.e. LODs) could be used in DRUMM to
enable far distance real-time rendering for large cities. The most
straightforward approach is to define additional radius R within
both R1 and R2 for each LOD. The download order for each
LOD would be thus determined according to the proximity to
the user. Fourth, we will evaluate the performance of DRUMM
with non-uniform city plans (e.g. with the complete VirtualOulu
3D city model [1]). Finally, we will also perform comparative
evaluation with other state-of-the art methods, such as Clip
Mapping [21].

ACKNOWLEDGMENT

The Strategic Research Council at the Academy of Finland
is acknowledged for financial support of the COMBAT project
(293389). This work has also been supported by the CADIST3D
project (268905) funded by the Academy of Finland and the
6Aika: Open City Model as Open Innovation Platform project
(A71143) funded by the ERDF and the City of Oulu under the
Six City Strategy program.

REFERENCES
[1] T. Alatalo, T. Koskela, M. Pouke, P. Alavesa, and T. Ojala, “VirtualOulu:

collaborative, immersive and extensible 3D city model on the web,” in
21st International Conference on Web3D Technology (Web3D ’16),
2016, pp. 95–103.

[2] T. Kolbe, “3D City Model of New York City.” [Online]. Available:
https://www.gis.bgu.tum.de/en/projects/new-york-city-3d/. [Accessed:
23-Nov-2016].

[3] T. Kolbe, “Semantic 3D City Model of Berlin.” [Online]. Available:
http://www.3dcitydb.net/3dcitydb/VisualizationBerlin/. [Accessed: 23-
Nov-2016].

[4] F. Biljecki, J. Stoter, H. Ledoux, S. Zlatanova, and A. Çöltekin,
“Applications of 3D City Models: State of the Art Review,” ISPRS Int. J.
Geo-Information, vol. 4, no. 4, pp. 2842–2889, 2015.

[5] J.-P. Virtanen, H. Hyyppä, A. Kämäräinen, T. Hollström, M. Vastaranta,
and J. Hyyppä, “Intelligent Open Data 3D Maps in a Collaborative Virtual
World,” ISPRS Int. J. Geo-Inf, vol. 4, pp. 837–857, 2015.

[6] H. Bakri, C. Allison, A. Miller, and I. Oliver, “Virtual Worlds and the 3D
Web -- Time for Convergence?,” in Immersive Learning Research
Network: Second International Conference, iLRN 2016 Santa Barbara,
CA, USA, June 27 -- July 1, 2016 Proceedings, C. Allison, L. Morgado,
J. Pirker, D. Beck, J. Richter, and C. Gütl, Eds. Cham: Springer
International Publishing, 2016, pp. 29–42.

[7] M. Hemmati, S. Shirmohammadi, H. Rahimi, and Ali Asghar Nazari
Shirehjini, “Optimized Game Object Selection and Streaming for Mobile
Devices,” Adv. Inf. Technol. Appl. Comput., vol. 1, pp. 144–149, 2012.

[8] H. Liu, M. Bowman, and F. Chang, “Survey of state melding in virtual
worlds,” ACM Comput. Surv., vol. 44, no. 4, pp. 1–25, 2012.

[9] G. Morgan and F. Lu, “Predictive interest management: An approach to
managing message dissemination for distributed virtual environments,” in
1st International Workshop on Interactive Rich Media Content
Production: Architectures, Technologies, Applications, Tools, 2003.

[10] J. Boulanger, “Interest Management for Massively Multiplayer Games,”
McGill University, 2006.

[11] J. Boulanger, J. Kienzle, and C. Verbrugge, “Comparing interest
management algorithms for massively multiplayer games,” Work. Netw.
Syst. Support Games, p. 6, 2006.

[12] B. Hariri, S. Shirmohammadi, and M. R. Pakravan, “A distributed interest
management scheme for massively multi-user virtual environments,” in
VECIMS 2008 - IEEE Conference on Virtual Environments, Human-
Computer Interfaces and Measurement Systems Proceedings, 2008, pp.
111–115.

[13] K. Vatjus-Anttila, T. Koskela, S. Hickey, and J. Vatjus-Anttila,
“Occlusion Based Message Dissemination Method in Networked Virtual
Environments,” in Seventh International Conference on Next Generation
Mobile Apps, Services and Technologies, 2013, pp. 44–49.

[14] U. Barchetti, A. Bucciero, S. S. Sabato, and L. Mainetti, “Loading and
rendering optimization for networked virtual worlds,” in Proceedings -
2007 International Conference on Cyberworlds, CW’07, 2007, pp. 265–
272.

[15] H. Rahimi, A. A. Nazari Shirehjini, and S. Shirmohammadi, “Activity-
centric streaming of virtual environments and games to mobile devices,”
HAVE 2011 - IEEE Int. Symp. Haptic Audio-v. Environ. Games, Proc.,
pp. 45–50, 2011.

[16] J. Sutter, K. Sons, and P. Slusallek, “Blast: A Binary Large Structured
Transmission Format for the Web,” in 19th International ACM
Conference on 3D Web Technologies, 2014, pp. 45–52.

[17] C. Stein, M. Limper, and A. Kuijper, “Spatial data structures for
accelerated 3D visibility computation to enable large model visualization
on the web,” in 19th International ACM Conference on 3D Web
Technologies, 2014, pp. 53–61.

[18] J. Gaillard et al., “Urban Data Visualisation in a web browser,” Web3D
’15 Proc. 20th Int. Conf. 3D Web Technol., 2015.

[19] T. Koskela, A. Heikkinen, E. Harjula, M. Levanto, and M. Ylianttila,
“RADE: Resource-aware distributed browser-to-browser 3D graphics
delivery in the web,” in 2015 IEEE 11th International Conference on
Wireless and Mobile Computing, Networking and Communications,
WiMob 2015, 2015, pp. 500–508.

[20] T. J. Hacker, B. D. Athey, and B. Noble, “The end-to-end performance
effects of parallel TCP sockets on a lossy wide-area network,” in
Proceedings - International Parallel and Distributed Processing
Symposium, IPDPS 2002, 2002, pp. 434–443.

[21] A. Asirvatham and H. Hoppe, “Terrain rendering using GPU-based
geometry clipmaps,” in GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation, 2005,
pp. 27–46.

