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Abastract—The Internet of Things presents the user with a novel 
means of communicating with the Web world through ubiquitous 
object-enabled networks. Cloud Computing enables a convenient, 
on demand and scalable network access to a shared pool of 
configurable computing resources. This paper mainly focuses on a 
common approach to integrate the Internet of Things (IoT) and 
Cloud Computing under the name of CloudThings architecture.
We review the state of the art for integrating Cloud Computing 
and the Internet of Things. We examine an IoT-enabled smart 
home scenario to analyze the IoT application requirements. We
also propose the CloudThings architecture, a Cloud-based 
Internet of Things platform which accommodates CloudThings 
IaaS, PaaS, and SaaS for accelerating IoT application, 
development, and management. Moreover, we present our 
progress in developing the CloudThings architecture, followed by 
a conclusion. 

Keywords – Cloud computing; Internet of Things; 6LowPAN;
CoAP; RESTful Web services 

I. INTRODUCTION

In 1999, Kevin Ashton [1] predicted that future computing 
would depend on more data captured by computer-enabled 
objects or things, rather than on data originated by people. Thus 
he brought the idea of the Internet of Things, in which objects 
are identified and are able to perceive or understand surrounding 
data. Objects are connected and are able to interact with servers 
over the Internet. Objects are also able to make queries and 
change their states and or their information programs. 
Ultimately, we would be able to track and count everything in 
the world, and greatly reduce waste, loss, and cost [2]. Nicholas 
Negroponte (head of the Media Lab at MIT) also claimed that 
the Internet of Things is about embedding intelligence so that 
things become smarter and do more than they did before. This 
paper takes a further step, and refers to the Internet of Things as
all IPv6 addressable things operated with Web-based services –
whether they are physical or virtual things. We use the term of 
Things to refer to all computer-embedded objects which operate 
on the Internet.  

The Internet of Things presents widened opportunities and 
applications, including smart grids to improve efficiency and 
reliability of power supplies; intelligent transportation to 
optimize traffic management and reduce traffic accidents, 
clogged routes, and carbon dioxide emissions; environmental 
monitoring to oversee drinking water sources and urban 
atmospheres or supervise the transmission of dangerous wastes, 
or e-health to accelerate and coordinate management of medical 
information, hospital wards, patient care, and drug provision. 
However, there are many challenges facing Things-related 
application development, such as end user scalability, data 
storage, heterogeneous resource-constrained Things, variable 
geospatial deployment, or energy efficiency [3][4]. 

Cloud computing [5] creates a new way of designing, 
developing, testing, deploying, running and maintaining 
applications on the Internet. Traditionally, the application 
developer needs to take care of running operating systems,
networks, load balancing, routers, firewalls, and storage, while 
integrating these things and allowing them to interact with the 
system. The developer also needs to take into account of 
scalability, or how the application could scale many 
geographically distributed users. Cloud computing applies a
utility model to produce and consume computing resources, in 
which the Cloud abstracts all types of computing resources, 
including storage, as services (i.e. Cloud services). The Cloud 
user (either application developer or application consumer) can 
access the Cloud services over the Internet, and the Cloud users 
pay only for time and services they need. The Cloud can also 
scale to support large numbers of service requests. Ultimately, 
Cloud computing takes care of the micro-lifecycle management 
of applications, and allows application managers to focus on 
application development and monitoring. The Cloud computing 
platform is designed to consist of a variety of services for 
developing, testing, running, deploying, and maintaining 
applications on the Cloud. Examples of Cloud computing 
platforms are The Amazon Web Services [6], Google App 
Engine [7], and Microsoft’s Windows Azure platform [8]. 

The Internet of Things and Cloud computing are both 
emerging technologies and have their own features. Things are 

651

Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design

978-1-4673-6085-2/13/$31.00 ©2013 IEEE



linked to their virtual representations on the Internet and are 
accessible via the Internet (i.e. Things as services, e.g. service-
oriented pervasive computing) [9]. Cloud computing also 
applies the utility model, and enables end-users to accommodate 
and consume services in an efficient and pay-per-use way. In
Mammoth project,1 we raise the following question: Can we 
integrate Cloud computing into the Internet of Things, and 
accelerate Things application, development, and management?  

To answer this question, our paper presents the state of the 
art for integrating Cloud computing and the Internet of Things. 
By examining a prototyped scenario, we analyze the IoT 
application requirements and present CloudThings architecture 
– a Cloud-based Internet of Things platform. The remainder of 
the paper is organized as follows: Section 2 reviews research on 
integrating Cloud computing into the Internet of Things. Section 
3 examines cases of application in a typical IoT scenario. 
Section 4 studies Things application system requirements. 
Section 5 presents CloudThings architecture, a Cloud-based 
Internet of Things platform. Section 6 presents implemented 
prototypes towards CloudThings architecture, and then offers 
conclusions.  

II. THE CLOUD-BASED INTERNET OF THINGS: A REVIEW

In Cloud computing, most of the computing resources exist 
on the Internet on servers, as opposed to client machines such as 
laptops or personal computers. Cloud computing is commonly 
associated with Information Technology (IT) services, but can 
theoretically be extended to embedded software programming 
[10]. Integrating Cloud computing with Wireless Sensor 
Networks (WSNs) brings the concept of Cloud-based embedded 
system programming. The Cloud-based integrated 
programming environment has a common benefit, namely that 
the local administrators and users don’t need to spend time with 
large client and server machine installations, setups, or software 
updates. With Cloud-based tools, the user can program from 
anywhere that has an Internet connection. In the proposed 
Cloud-based model [10], the Cloud connects devices such as 
PCs, smart phones, embedded development platforms, or host 
machines to Cloud-based programming tools. These tools can 
include sales databases, or Integrated Development 
Environments (IDE), and can compile resources hosted by 
Cloud computing platforms such as Amazon.com, Microsoft, 
Google, and Yahoo. The Cloud-based model [10] entails that the 
Web-based tools are operating systems, and are client machine-
agnostic. A further advantage of the Cloud model is the 
flexibility of implementation.  

In RFID application development, Dominique et al. [11] 
pointed out that the deployment of RFID applications often 
remains complex and costly, since they involve the tedious 
deployment and management of large and heterogeneous 

1 http://www.mediateam.oulu.fi/projects/mammoth/?lang=en 

distributed systems. Consequently, they are only suitable for 
large organizations; rather than the limited resources of small 
business applications. To address this problem, Dominique et al. 
discussed a Cloud computing solution integrating virtualization 
technologies and the architecture of the Web and its services. 
They applied the Amazon Web Service platform and Elastic 
Compute Cloud (EC2) services. The EC2 service allows the 
creation and management of virtual machines (Amazon 
Machine Images, or AMIs) that can then be deployed on demand 
onto a pool of machines that are hosted, managed, and 
configured by Amazon. The benefit of this approach is that the 
server-side hardware maintenance is delegated to the Cloud 
provider. Also it offers better scaling capabilities, as the 
company using the Cloud AMI, can deploy additional and more 
powerful instances according to the amount of requests. 

The Cosm [12] (formerly Pachube) service for the Internet 
of Things provides data management infrastructure for sensors, 
devices, and environments. It is an on-line database service that 
allows developers to connect sensor data, e.g. energy and 
environment data, from objects to the Web, and to build their 
own applications based on that data. The Cosm manages 
millions of data points per day from thousands of individuals or
organizations around the world. The Cosm allows people to 
embed real time graphs in websites. It analyzes and processes
historical data pulled from any public data source Cosm feeds 
and sends real time alterations from any data stream to control 
scripts, devices, or their environments.

Nimbits [13] is an open source data logging Cloud server 
built on Cloud computing architecture that provides 
connectivity between the Internet of Things using data points. 
Users can use Nimbits to record and share sensor data on the 
Cloud freely. With Nimbits, users can create data points on the 
Cloud and feed changing numeric, text based, or xml values into 
them. Data points can be configured to perform calculations, 
generate alerts, relay data to social networks or can be connected 
to spreadsheets, websites, and more. Nimbits offers a data 
compression mechanism, an alert management mechanism, and 
data calculation on the received sensor data, using simple 
mathematic formulas.  

ThingSpeak [14] is another open source Internet of Things 
application and API (application programming interface) for 
storing and retrieving data from Things which uses HTTP over 
the Internet or via a Local Area Network. With ThingSpeak, 
users can create sensor-logging applications, location tracking 
applications, and a social network of Things with status updates. 
The ThingSpeak API allows for numeric data processing such 
as time scaling, averaging, median summing, and rounding. The 
ThingSpeak channel feeds support JSON and XML formats for 
integration into applications.  
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Paraimpu [15] aims to allow people to connect, use, 
compose, and share Things, services, and devices to create 
personalized applications in the field of the Internet of Things. 
Users can work with Paraimpu connect sensors, motors, micro-
controllers such as Arduino, domestic appliances, lighting and 
domotics systems, smart-phones, or other systems to talk with 
the Web. Paraimpu allows users to compose and easily inter-
connect and mash-up Things to react with events, environmental 
sensors, or social activities. Paraimpu is a social tool, and it not 
only communicates with existing social networks, but also 
allows users to share their Things with friends. This allows 
avoidance of waste from buying similar objects for the same 
purpose. 

The iDigi Device Cloud [16] allows users to connect a 
physical device to the Cloud and use an online Web application 
for remote access. The iDigi Device Cloud application converts 
complex device data into simple, useful information concerning 
anything from refrigerator temperatures falling below a specific 
threshold, to soil quality. The iDigi Platform is a machine-to-
machine (M2M) platform as a service. The iDigi Platform 
manages the communication between enterprise applications 
and remote device assets, regardless of location or network. The 
platform includes the device connector software (called iDigi 
Dia) that simplifies remote device connectivity and integration. 
The application messaging engine enables broadcast and receipt 
notification for application to device interaction and 
confirmation. The application also has cache and permanent 
storage options available for generation-based storage and on-
demand access to historical device samples. 

The SensorCloud™ [17] is a sensor data storage, 
visualization, and remote management platform that leverages 
powerful Cloud computing technologies to provide excellent 
data scalability, rapid visualization, and user programmable 
analysis. The core features include OpenData API, 
LiveConnect, FastGraph, and MathEngine. The OpenData API 
allows users to upload sensor data from any Web-connected 
source or platform, and download data sets. The FastGraph is a 
sophisticated, time-series visualization and graphing tool. The 
LiveConnect feature provides users full access to every function 
available on their wireless sensor network, from anywhere in the 
world. The MathEngine allows users to process vast quantities 
of sensor data in the Cloud, and on the fly. 

There are various Things development platforms such as 
Wiring [18], Sun SPOT [19], mbed [20], or Arduino [21].
Wiring [18] is an open-source programming framework for 
microcontrollers. Wiring allows writing software to control 
devices attached to the electronics board, to create all kinds of 
interactive objects, spaces, or physical experiences of feeling 
and responding to the physical world [18]. Sun SPOT (Sun 
Small Programmable Object Technology) [19] is a wireless 
sensor network (WSN) mote. The device is built upon the IEEE 
802.15.4 standard. The mbed microcontroller [20] is a single-
board microcontroller with associated tools for programming 
the device. The current hardware of the mbed microcontroller is 

based around an NXP microcontroller, which has an ARM 
Cortex M3 core, running at 96MHz, with 512KB flash, 32KB 
RAM, as well as several interfaces including Ethernet, USB
Device, controller area network, Serial Peripheral Interface 
BusInter-Integrated Circuit, and other I/O. For example, an 
mbed application can get an RFID tag to trigger a tweet. Arduino 
[21] is a popular open-source single-board microcontroller and 
a descendant of the open-source Wiring platform which is 
designed to make the process of using electronics in 
multidisciplinary projects more accessible. The hardware 
consists of a simple open hardware design for the Arduino board 
with an Atmel AVR processor, and on-board input/output
support. The software consists of a standard programming 
language compiler and the boot loader that runs on the board.  

III. THINGS-ENABLED SMART HOME SCENARIO: USE 
CASE STUDY

The equipment used in our smart home scenario includes 
appliances, stereos, televisions, toasters, microwave ovens, air 
conditioners, computing equipment such as PCs, PDAs, mobile 
phones, small controllers (for lights, curtains, and windows), 
video intercoms, and sensors (for indoor position, temperature, 
light, rain, GPS, bodies, smoke, gas, infrared microwaves, etc.). 
Outdoor sensors are included in the scenario as well. Table 1 
summarizes the major use cases depicted in the following 
scenario.  

On an early winter morning at 7 a.m., Dr. Smith wakes up as 
the background music in the bedroom gently rises, and the 
curtain slowly opens. As he starts washing his face, the 
background music in the bedroom automatically stops, and the 
morning news starts in the bathroom. In the kitchen, bread slices 
and milk have been heated. When Dr. Smith sits at the kitchen 
table, the TV in the kitchen automatically comes on and tunes to 
a previously set program. When he stands up to leave, the TV 
screen presents his memoranda, schedule, and reminder notes 
for the day. When he leaves for the office, the TV and air 
conditioning automatically turn off, and the anti-theft systems 
such as magnetic door locks and infrared microwave detectors 
start working. 

By 10 a.m., the outdoor temperature sensors, light sensors, 
and raindrop sensors determine it will be a sunny day. The
windows open automatically to bring fresh air into the house. 
Around 4 p.m., the temperature drops, and the windows 
automatically close. At 5:30 p.m. the central control system 
calculates that Dr. Smith will be home in 40 minutes, based on 
tracking the travel speed of his mobile phone and the traffic 
status reports. Thus, the air conditioning starts and the 
temperature is set to his favorite 20 degrees. 

Dr. Smith leaves his office at 5:30 p.m. The sensor network 
monitoring air quality reports lowered air quality along his 
normal route home, so he selects a different route. As the traffic 
system reports less traffic on that route, the system estimates the 
effect on fuel consumption to be minimal. 
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At 6:30 p.m., Dr. Smith arrives home. The room temperature 
is very comfortable, the lights come on as he enters the living 
room, and the curtains close. The computer automatically 
downloads and opens the Word document which Dr. Smith did 
not finish at the office, and directs him to the last modified lines. 
Dr. Smith works on the document for a while, then checks the 
report generated by the house concerning its energy 
consumption. He notices that the energy consumption has been 
normal, as most devices have consumed the expected amounts 
of energy. The energy share for the fridge has been quite high, 
so he increases the fridge temperature by 0.5 degrees. He is 
happy to see that the solar panels and the small wind mill on the 
roof have actually generated so much energy that his house has 
sold some energy to the smart grid during the day. However, the 
report on his daily activity (based on his movements measured 
by wearable sensors) advises him that he has not performed the 
amount of physical activity he had planned, so he makes a 
mental note to walk more. 

At 7 p.m., Dr. Smith begins to prepare for dinner. His 
favorite light music automatically starts in the kitchen. He would 
like to change the music, so he raises and sways his left hand to 
a different beat, and cheerful music starts to play. When Dr. 
Smith sits down for his meal in the dining room, the kitchen 
lights automatically switch off, while the music continues to 
play in the dining room. When he sits on the sofa in the living 
room, the TV presents him with the concluding portion of a 
program he didn’t finish watching yesterday.  

At 10 p.m., Dr. Smith steps into the bedroom. The lights 
there slowly come on, while the lights in the living room, the 
TV, and the stereo speakers all turn off. As Dr. Smith goes sleep, 
all his devices work in a sleep state as well. Only the smoke, gas, 
and door security systems remain alert. 

TABLE 1. SUMMARY OF USE CASES. 

Time Use Cases Description 

7 a.m. Ubiquitous 
positioning service

Locating people and 
presenting services

10 a.m. to 5.30
p.m.

Physical-world Web Ability to monitor and 
control home objects on the 

Internet

6.30 p.m. Synchronizing data 
and ambient 

metering

Ability to store and 
synchronize contents in 

multiple devices and real-
time metering of aggregate 

power consumption

7 p.m. Intelligent 
interaction

Ability to respond to human 
gestures

10 p.m. Energy-efficient 
management

Ability to self-control

IV. THINGS FEATURES AND THINGS APPLICATION 
CHARACTERISTICS

A. Things Features 
The above scenario involves many Things and Things 

applications. These Things present the following common 
features: 

Sensor Things perceive and transmit data. These Things can 
collect the data on the environment and information related to it 
(in this case, Dr. Smith’s indoor location, indoor/outdoor 
temperature, real time traffic situation, air quality, energy 
consumption, gesture commands, or lighting conditions) and 
transmit them to a different Things when necessary (such as 
your mobile phone or your laptop) or to the Internet. 

Actuate Things are based on trigger events. Their perceived 
information automatically triggers corresponding devices. For 
instance in this case, Dr. Smith’s waking up triggers turning on 
the background music in the bedroom and preparing his 
breakfast. His leaving home triggers turning off air conditioners 
and the TV, and turning on anti-theft systems.  

Things obtain information from the Internet in a pull/push 
way, since they are part of the Internet. For instance in this case, 
the TV automatically retrieves Dr. Smith’s calendar, 
memoranda, and reminder notes for the day. The air conditioner 
fetches Dr. Smith’s arrival time and prepares to start; his car 
obtains the traffic status and makes a routing decision, etc.  

Things interact with each other and assist communication.
They interact with each other and exchange information. Things 
also participate in networking and serve as routing nodes that 
assist in communication, forwarding data to the endpoint. 

B. Things Application Characteristics 
In the above scenario, there are many Things applications. 

First, music plays while the user moves around; the TV
automatically tunes to a previously set program and retrieves the 
user’s calendar, memoranda, and reminder notes. Second, 
outdoor temperature sensors, light sensors, and raindrop sensors 
produce data frequently, and automatically interact with each 
other to make windows open or close. Road sensors surrounding 
the city produce data and collaborate with each other to report 
real time traffic status. Third, the Things automatically fetch and 
direct information files to the last modification lines. They meter 
energy consumption, and present a statistic report while 
initiating sales of extra energy to the smart grid during the day. 

To realize the above scenario involves challenges of 
integrated computing, big data storage, various development 
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environments, heterogeneous hardware infrastructure 
management, security and privacy, as well as the following 
issues.

 Sensors generate a lot of data that needs to be stored and 
managed. Usually, embedded memory is quite limited.
Utilizing memory cards or computers to store sensor 
data is an alternative way, but these are still limited in 
storage capacity and require major efforts to manage. 

 Things require Web-based interfaces for data exchange 
and integration between other applications, so it will be 
possible that the user can access and control Things 
anywhere.  

 Things require sufficient computational and storage 
resources to handle large-scale applications on demand. 

 Things require sufficient computing resources for real-
time processing of heterogeneous data, in order to make 
critical decisions and provide quick response to the user. 

 Things require Web-based platforms for programming, 
deployment, and for updates without creating 
downtime.  

 Things require automatic formation of workflows, and 
invocation of services to carry out complex tasks. 

 Things require different interaction mechanisms, 
loosely or tightly coupled, synchronized or 
asynchronized for complex event processing.  

 The system requires interoperability between Things, so 
that the Things are agnostic from heterogeneous 
hardware and standards. 

 Things require use of IT resources (e. g. computer, 
storage, and network) on demand in a scalable and cost-
efficient way.  

 Things need to be built in such a way as to ensure an 
easy and secure data exchange and users’ control, and 
avoid any risks to their security and privacy. 

V. CLOUDTHINGS ARCHITECTURE: CLOUD-BASED INTERNET 
OF THINGS PLATFORM

What makes the Cloud-based Internet of Things different 
than conventional Internet of Things is basically the ability to 
develop, deploy, run, and manage Things applications online via 
the Cloud. Fig. 1 illustrates the main features of the Cloud-based 
IoT platform (i.e. CloudThings architecture) and their 
interaction with the three Cloud computing models of 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Figure 1 also specifies our 
technical solutions to networking Things, interacting Things, 
and integrating Things with the Cloud.  

 Mammoth SaaS client

 Mammoth PaaS client

 Mammoth IaaS client

 CoAP/6LowPan network

IaaS

 SaaSPaaS

Virtualization
Server/storage
Network
Load balancer
firewall
...

RESTful Web services:
Subscription
community coordination
Things connection and discovery
Data intelligence, and
Things Composition

Database
APIs
Programming language
Application server
...

Arduino-enabled Things

CoAP GET

CoAP POST

CoAP POST

CoAP GET

XML/HTTP

Arduino-enabled Things

XML/HTTP

XML/HTTP
XML/HTTP

 
Figure 1. CloudThings architecture: the Cloud-based IoT platform

CloudThings architecture is an online platform that allows 
system integrators and solution providers to leverage a complete 
Things application infrastructure for developing, deploying,
operating, and composing Things applications and services that 
consist of three major modules: 

The CloudThings service platform for Things is a set of 
Cloud services (IaaS), allowing users to run any 
applications on Cloud hardware. The CloudThings 
service platform for Things dramatically simplifies the 
application development, eliminates need for 
infrastructure development, shortens time to market, 
and reduces Things management and maintenance 
costs. The CloudThings service platform offers users 
unique device management capabilities. It 
communicates directly with devices and provides 
storage to collect Things data and transmit Things 
events. Vast amount of sensor data can be processed, 
analyzed, and stored using the computational and 
storage resources of the Cloud. The CloudThings 
service platform allows sharing of sensor resources by 
different users and applications under a flexible usage 
mode. 

The CloudThings Developer Suite for Things is a set of 
Cloud service tools (PaaS) for Things application 
development. These tools include open Web service 
application programming interfaces (APIs), which 
provide complete development and deployment 
capabilities to Things developers.  

The CloudThings Operating Portal for Things is a set of 
Cloud services (SaaS) that support deployment and 
handle or support specialized processing services 
including service subscription management, community 
coordination, Things connection, Things discovery, 
data intelligence, and Things composition. 
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A.  Interact with Things Using Constrained Application 
Protocol (CoAP) 
In the CloudThings architecture, we use CoAP to interact 

with Things. The CoAP [22] is a specialized Web transfer 
protocol for use with constrained nodes and constrained (e.g. 
low-power, or lossy) networks. The nodes often have 8-bit 
microcontrollers with small amounts of ROM and RAM, while 
constrained networks such as 6LoWPAN often have high packet 
error rates and a typical throughput of 10s of kbit/s. The protocol 
is designed for machine-to-machine (M2M) applications such as 
smart energy and building automation. 

CoAP provides a request/response interaction model 
between application end-points. This supports built-in discovery 
of services and resources, and includes key concepts of the Web 
such as URIs and Internet media types. CoAP easily interfaces 
with HTTP for integration with the Web, while meeting 
specialized requirements such as multicast support, very low 
overhead, and simplicity for constrained environments. 

CoAP is based on the same client/server model as HTTP, 
and represents its interaction model in a similar manner. 
Resources are requested and identified by URIs using the 
Representational State Transfer (REST) [23] methods of GET, 
PUT, POST and DELETE. In contrast to HTTP, the CoAP 
exchanges messages asynchronously over UDP (User Datagram 
Protocol). The GET method is used to retrieve resources from 
WSN nodes or telematic devices. The resource is identified by 
the requested URI. The PUT method is used to modify an 
existing resource on a sensor node or a telematic device. Both 
the methods and the requested URI are carried in a confirmable 
(CON) message which represents the request. 

B. Networking with Things Using 6LoWPAN 
In the CloudThings architecture, we use 6LoWPAN, i.e.  

IPv6-based Low Power Wireless Area Networks. 6LoWPAN 
[24] defines message frame formats, fragmentation methods, 
and header compression techniques required to fit Ipv6/UDP 
datagrams in the very limited IEEE 802.15.4 frame size. The 
6LoWPAN innovations provide IP access to a wide set of 
networked devices, which, being low-cost, low-power 
constrained hosts, could not easily benefit from the huge 
addressing space of IPv6. 6LoWPAN is able to reduce the 
IPv6/UDP header while maintaining the main functionalities 
and the size of the addressing space, thanks to a cross-layer 
optimization approach.  

Routing functionalities are provided by the Routing Protocol 
for Low power and lossy networks (RPL) [25], which are 
another IETF (Internet Engineering Task Force) solution 
discussed in the Routing Over Low power and Lossy networks 
(ROLL) working group. RPL supports different routing path 
optimizations based on specific objective functions. For 
instance, high priority packets can be routed to offer low 
delivery delay, while delay-tolerant traffic can be handled to 
minimize the energy expenditure or to maximize the network 

capacity. Another important feature of RPL is its intrinsic 
scalability with respect to the network density. 

C. Integration with the Cloud Using RESTful Web Services 
There exist two architectural styles for Web services 

applications: REST [23] and SOA (Service-Oriented 
Architecture) [26]. Both of these describe the methods for 
designing and developing interoperable services via Web and 
design principles. According to [27, 28], SOAs are not well 
suited for enabling the end-users to create ad-hoc applications; 
SOAs experience complex functional blocks and service 
implementations; SOAs are often used to model and realize 
complex business flows. The RESTful protocol is HTTP, which 
uses HTTP-similar standardized methods (e.g. GET, PUT, 
POST, DELETE, etc.) to deal with resources. We adopt REST 
as architectural style, where Things are modeled as RESTful 
resources and referred as services  

VI. IMPLEMENTATION

This section presents two related prototypes. Fig. 2 shows 
the smart home application based on a Cloud infrastructure. In 
the application, the sensors read the home temperature and 
luminosity from Arduino-enabled IoT things and the Cloud 
application stores and visualizes them so that the user can view 
them anywhere, anytime using a Web browser and an Internet 
connection. Specifically, (1) we use LM35 temperature sensor 
to sense the home environment temperature; use LDR (light 
dependent resistor) analog sensor to sense the home light 
luminosity; (2)we use Ethernet cable to connect Arduino to the 
Internet; (3)We use HTTP (through a GET and POST request) 
to send data between Arduino-enabled IoT things and the Cloud 
application. (4) We use a Cloud service –Google App Engine to 
host the Cloud application that stores sensor readings and 
visualizes them. (5) We also use Cloud-based IoT service –
Paraimpu to connect Arduino-enabled sensors, and to share the 
sensor readings with friends. 

Computer

Internet

Http://Web app

Paraimpu
Configuring 
sensors
Reading data

Cosm
(test)

Arduino
CO

Https/http

programming

Cloud application 
platform (heroku)

Arduino
CO

Social media 
(facebook)

Figure 2. IoT-based smart home scheme
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Fig. 3 presents the Cloud architecture to accelerate service 
composition and rapid application development. We extend the 
conventional Cloud architecture by inserting a special 
“Composition as a Service” layer for dynamic service 
composition. The CM4SC middleware encapsulates sets of 
fundamental services for executing the users’ service requests 
and performing service composition. These services include 
process planning, service discovery, process generation, 
reasoning engine service, process execution, and monitoring, as 
detailed in [5]. The trial implementation also demonstrates that 
CM4SC middleware as a service releases the burden of costs and 
risks for users and providers in using and managing those 
components. 

MiddlewareCM4SC Middleware

Application

Platform

Process plan, service discovery, process generation,
reasoning engine, process execution and monitoring

User tasks, business applications

End users

Software as a Service

Composition as a Service

Platform as a Service

Infrastructure

Hardware

Platform

Computation (virtual machine), storage (block)

CPU, memory, disk, bandwidth

Software framework (Windows Azure, Google AppEngine)

Infrastructure as a Service

Hardware as a Service

Figure 3. Cloud architecture for dynamic service composition 

VII. CONCLUSION

The MAMMOTH project, funded by Tekes (the Finnish 
Funding Agency for Technology and Innovation), aims to 
facilitate information exchange and synergic performance 
between Things and people via global massive-scale M2M 
(machine-to-machine) networks, and provide M2M automatic 
metering, embedded Web services, and universal control of 
electricity or water utilities, etc. The integration of Cloud 
computing into the Internet of Things presents a viable approach 
to facilitate Things application development. This paper studies 
a Things-enabled scenario, and designs a Cloud-based Internet 
of Things platform – the CloudThings architecture, which 
accommodates IaaS, PaaS, and SaaS for developing, deploying, 
running, and composing Things applications. The previous 
implemented prototypes establish the fundamental 
developments for approaching CloudThings architecture.  
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