
Mobile Agents for Integration of Internet of Things
and Wireless Sensor Networks

Teemu Leppänen, Meirong Liu, Erkki Harjula, Archana Ramalingam, Jani Ylioja, Pauli Närhi,
Jukka Riekki, Timo Ojala

Department of Computer Science and Engineering,
University of Oulu, Finland

{teemu.leppanen, meirong.liu, erkki.harjula, archana.ramalingam, jani.ylioja, pauli.narhi,
jukka.riekki, timo.ojala}@ee.oulu.fi

Abstract—We demonstrate interoperable mobile agents to
integrate Internet of Things and wireless sensor networks with
resource-constrained low-power embedded networked devices. We
introduce adaptable composition for the mobile agent, complying
with the Representational State Transfer principles, which are
then used for agent migration, controlling the agent and exposing
the data, system resources, tasks and services, to the Web. We
gather requirements for the system and heterogeneous networked
devices and present an application programming interface to
enable mobile agents in these systems. The agents are
demonstrated in a real-world prototype with smartphones and
embedded networked devices, where we utilize a proxy component
to expose system resources to the Web for human-machine
interactions. Spanning over disparate networks and protocols, the
proxy translates messages including the agent composition,
between HTTP and Constrained Application Protocol. Lastly, we
suggest an evaluation method for the agent communication and
migration costs, considering the different types of system
resources and utilization.

Keywords— Mobile Agent, Interoperability, Collaboration,
Internet of Things, Wireless Sensor Networks, Constrained
Application Protocol

I. INTRODUCTION
The Internet of Things (IoT) refers to globally connected

and interactive network of physical and virtual devices,
featuring the integration of disparate technologies and
distributed intelligence [1]. The IoT systems require scalability
beyond millions of devices, where centralized solutions easily
reach their bounds. To achieve global connectivity,
standardized protocols and interfaces are necessity to address
device heterogeneity and to enable universal access. Resources
provided by the IoT devices need to be globally identified,
addressable and discoverable. Information about services, their
functionality and interfaces needs to be discoverable. The
services should be loosely-coupled and support mobility, but at
the same time maintain quality of service constrains. Moreover,
wireless sensor networks (WSN) with limited resource
capabilities, can provide application-specific services as a
single entity or collaborate as a part of IoT [2, 3]. In IoT, WSN
can be utilized to collect contextual and environmental
information [4] and to monitor phenomena and interactions.
WSN introduce their own requirements, such as lightweight in-
network services and low operating system and communication

overhead, where energy consumption is the main concern.
Therefore, in the collaborative WSNs, the key issue is how to
design collaboration modes for resource-constrained WSN
nodes that could optimize the resource utilization [2]. These
collaborative systems cannot be instantiated and configured
once before deployment, as the devices, services, applications
and system configurations are in continuous transition. In the
runtime deployment of components and composition of
services, it is needed to consider software adaptation and
evolution to cope with environment and requirement changes.
The major issues here include interoperability between
different standards, protocols, data formats, resource types,
heterogeneous hardware, software components, database
systems and finally human operators [5].

In this context, agent-based systems provide de-
centralization and flexibility in the system configuration,
abstracting heterogeneous subsystem for integration,
cooperative multi-agent systems and high-level abstractions of
system resources [2, 5-9]. Agents act autonomously, possess
self-properties and allow the direct manipulation of the hosting
device. Mobile agents, i.e. autonomous programs that transmit
their execution state from device to device in networked
systems where the execution of the program then continues,
provide robustness, adaptation and evolution. Communication
costs are reduced when distributed data processing is moved
close to the data source, software components are deployed
dynamically and tasks are executed asynchronously [2, 10].

However, this complexity of interactions cannot be
anticipated by humans, which greatly complicates the system
design and eventually requires the use of metadata and
ontologies [5]. The role of humans should be minimal in
system management, but also in its behavioral control and
coordination [5]. Nonetheless, humans play important roles,
chancing them depending on the context; as users, as resource
managers, as service providers and as system administrators.
Therefore a “smart interface” is required for humans to access
various services and applications [5]. For human-machine
interactions, abstracting IoT system and WSN as Web Services
has benefits: various visualization services for simplified data
search, retrieval and aggregation, access to contextual
information, uniform interfaces for resource access and linked
stateful resources [3, 5].

This work was conducted in the MAMMotH Project, funded by Tekes.

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI

14

2013 IEEE International Conference on Systems, Man, and Cybernetics

978-1-4799-0652-9/13 $31.00 © 2013 IEEE

DOI 10.1109/SMC.2013.10

14

This paper presents interoperable mobile agents to provide
collaboration and interoperability in IoT and programmable
WSN, facilitating both heterogeneous IoT devices and low-
power resource-constrained WSN nodes. This topic has
received little attention so far. Adaptable composition is
suggested for the mobile agent, where the composition is based
on Representational State Transfer (REST) principles,
additionally used for agent migration, controlling the agent and
for system resource access. Moreover, we present an
application programming interface (API) and system
architecture components to enable interoperability. A proxy
component allows connectivity between disparate networks
and translates the messages, including the agent composition,
between HTTP and Constrained Application Protocol (CoAP)
[11]. The proxy additionally enables Web service access to the
system resources, enabling human-machine interactions.

The rest of the paper is organized as follows. Section II
describes the requirements for interoperable mobile agents in
IoT and WSN. In Section III, is presented the mobile agent
composition. In Section IV, we present the API for utilizing
mobile agents in heterogeneous systems and system design
considerations. A real-world prototype enabling these mobile
agents is demonstrated in Section V and evaluated in Section
VI. Section VII gives the related work and, in Section VIII, we
discuss this approach and the future work.

II. REQUIREMENTS FOR MOBILE AGENTS
We gather the requirements for interoperable mobile agents

in heterogeneous resource-constrained embedded networked
devices. We also consider the REST principles in the agent
composition, migration and control.

Scalable system configuration. In IoT, the systems are
scalable beyond current networked systems. It is assumed a
vast number of devices and tasks running in parallel,
consuming the dynamically available system resources in
competitive manner. Therefore, distributed architecture is
necessity, services should be loosely-coupled and
computational load distributed among the devices. Gateways
and proxies are introduced to allow access to abstracted
resources and heterogeneous subsystems far away, spanning
over networks, protocols and communication interfaces.

Abstracted system resources. System resources, hosted by
the devices, are the main abstraction in REST, consisting of the
resource URL, its state and various representations. Here, the
computational task is abstracted as the agent composition,
whose state is the representation of the intermediate task result.
The agent includes the actual functionality, i.e. the computation
code, to create in-time representations of the task state.

Abstracted heterogeneous devices. The system devices
expose the available resources based on their dynamic
capabilities. These local and global resources include data,
hosted resources and particular device capabilities. The device
is utilized through basic, standardized, communication
primitives with unified interfaces, where the primitives should
be interface and protocol independent.

Standard interfaces. Standard, unified and simple
interfaces are required to address device heterogeneity,

resource abstraction and for universal access. To enable access
from the Web, HTTP interface or a proxy component is
required. To simplify the system implementation, the agent
transfer and agent messaging protocols should be the same,
based on the basic communication primitives.

Dynamic binding of system resources. The devices are
simultaneously servers for their local resources and clients for
the resources hosted by other devices. The agents should, as
abstract compositions, allow dynamic binding to resources and
dynamic mapping of the task into any system configuration for
the lifetime of the task. In distributed systems, with
heterogeneous devices the support for different types of
resource bindings is required, even simultaneously for varying
resource types. The agent composition should, in general, be
exposed to the system by the devices and be modifiable and
adaptable. Runtime lookups and loose coupling to the resources
is facilitated by stateless communication.

Dynamic agent deployment. As the IoT systems are in
continuous transition, runtime injections of agents into the
system are common and the agent life-cycle is application-
dependent. Therefore, the agent composition needs to adapt and
be robust.

Lightweight mobile agent. The agent must be lightweight
in composition, serializable, transferable as a whole or as
sequential parts and executable in embedded devices with
limited processing power, memory, communication capabilities
and battery lifetime. For the most resource-constrained devices
binary message formats are necessity.

Shared task state. The devices maintain their resource and
capability states, the agents maintain their task states, which
both are then collaboratively utilized by other agents. As the
task state is not tightly-coupled into a physical device, the
agent provides some robustness and the task state is cacheable.

III. MOBILE AGENT
We present the agent composition model, facilitating

dynamic system configuration based on available resources and
modifying the composition in runtime. The agent composition
is based on the mobile code execution unit description in [12]:
code segment, data space and execution state. To comply with
the REST principles and Web Services paradigm, we refer to
these as code, resource and state segments. In the following, we
elaborate the composition and present the detailed use of the
mobile agents in heterogeneous device platforms. The
composition is illustrated in Table I. In addition to the given
three segments, the data structure includes an unique name for
the agent to allow dynamic lookups in runtime. The segments
may also include metadata, such as the last time the agent state
was updated or the keys for system and resource access.

Code segment. The computation task code is stored into
and accessed from the code segment, which can be static but it
is not required. The code can be presented in any programming
language: high-level macroprogramming language, scripting
language, precompiled intermediate code such as bytecode or
even as machine language instructions. The code segment
facilitates including the code, with known type parameter, in
several different programming languages, being intended for

1515

multiple heterogeneous devices or execution environments
simultaneously, regardless of the devices operating systems or
hardware. Additionally, to minimize message size, this segment
can include a reference to the location of the code for on-
demand retrieval. This addresses the device heterogeneity.

Resource segment. The resource segment contains the
local, remote and static resources for the task execution. The
local resources refer to the resources offered by the hosting
device and remote are external to the hosting device. The static
resources are remote and static during the lifetime of the agent.
These resources are then mapped to the code in the code
segment as variables. The resource references are presented as
URLs, with device address and resource name, to comply with
Web and REST principles. The remote resources should be
addressed using global identifiers, as they should be shareable
and globally accessible from anywhere in the system.
Additionally, access control can be applied in context of the
current task or application. The metadata can contain the access
interface and content-type of the resource. The hosting device
then needs to bind to the local resources and retrieve the remote
and static resource representations when it receives the agent.
In case of static resource, the representation is requested only
once and moved into the state segment as a constant.

The resource access allows binding-by-identifier, binding-
by-value and binding-by-type [12] applied to the system
resources. When binding-by-identifier, the agent requests
resource representation from particular device or other agent.
When binding-by-value, the agent requests the representation
from any device hosting the resource through a name server.
When binding-by-type, it requests the representation of any
system resource of the specific type. Re-binding to the remote
resources is required whenever the agent migrates from a
device to another. The resource segment therefore presents
dynamic and partial view of the system resources utilized by
the agent.

Here, we have two options for storing the resource segment
contents as list. First, the list does not exist outside the agent.
Secondly, the list can be exposed as a system resource. Then,
devices can request the participating device addresses from the
hosting device with a resource query or utilize it as “home
location” for the resources. This additionally allows network
devices, proxies or gateways to modify the resource segment
outside the agent composition to adapt to runtime changes in
the system configuration. The agent may utilize the resource
segment in multiple migration policies freely.

State segment. The state segment maintains the current
state of the agent, i.e. the intermediate or final result of the
computational task. In the hosting device, the agent is
registered into the name server while migrating in the system,
allowing resource queries for the agent state. Other local data,
such as program counter, variables and static resources are
moved to this segment, as unattached resources from the
resource segment once the representations are known. These
resource representations are later mapped into the task code as
variables. This segment allows all data types or data structures
to be used, depending solely on how the task code handles
these variable types. Even different and multiple types of the
same data can be used for different programming languages.

Agent mobility. The local resource segment describes how
the agent migrates in the system. By utilizing the local resource
URLs, the agent migrates from the device hosting the particular
resource to another device. Moreover, we introduced two
migration policies, thus the agent mobility is resolved by the
local resource segment and the given migration policy. If the
policy is “service”, then the agent migrates to each device the
local resource segment in turn, until specifically deleted. If the
policy is “task”, then the agent migrates to each device only
once. With the “service” policy, the local resource segment is
considered a ring buffer, where the next resource URL is in the
top and URLs shuffle from top to bottom. With the “task”
policy, the URLs are deleted from the segment once visited.

When migrating, the agent is cloned in the destination
device, where the state is then updated and the hosting device
registers the agent into the RD. After successful registration, an
acknowledgement is sent to the previous host, which then
deletes the agent from its memory. This is implemented to
make sure that the previous state of the agent is always
available until state update has finished.

A. Mapping Agent to the CoAP Message Structure
As CoAP is binary protocol, the agent composition is

significantly smaller in size than the composition in human-
readable scripting languages and data representations used in
the Web, such as JSON. The mapping of the agent composition
into the CoAP message structure is presented in Table II. This
mapping extends our previous work [13], where we did not
consider mobile agents. For the IPv6 addresses, we assumed
globally known prefix (8 or 12 bytes) for the network, which

TABLE I. THE MOBILE AGENT COMPOSITION

Segment Elements
Name { Agent name, i.e. unique resource name }
Code Code

{ Task code }
{ Programming language }

Reference

{URL}
{ Programming language }

Resource Local { Resource list as URLs }
Remote { Resource list as URLs }
Static { Resource list as URLs }

State { State variable list }
{ Local variable list }
{ Metadata: API-Key for access control}

TABLE II. MAPPING THE AGENT COMPOSITION TO COAP MESSAGE
STRUCTURE

Agent Composition CoAP Option No. Size (bytes)
Mobile Agent Content-type:

Task / Service
1 1

Name Uri-Path (not new) 1 k
Local resource segment Next Address [0..n] n * 8 (IPv6)

[0..m] m * 4 (IPv4)
Metadata: Access control API-Key 1 n
Task code Code [0..1] n
Task code reference Code Reference [0..1] k
Remote resource segmenta Remote Resource [0..n] n * (8 + j)
Static resource segmenta,b Static Resource [0..n] n * (8 + j)
State segment Payload 1 n

a. The address length is 8 bytes and j is the length of the particular resource name
b. Static resources are not moved into the state segment in the CoAP message

1616

has been omitted from the CoAP option address field. We
utilize the CoAP option Content-type to identify the message as
mobile agent and its migration policy. Additionally, we
introduce a number of new CoAP message options to describe
the agent composition. If the task code is not included in the
message, the reference contains the resource name for remote
retrieval, where the programming language type has been
omitted as it is known by the requesting devices. The code,
resource and state segments can contain any number of items.
The state segment is stored as the message payload, being the
actual transferable content, which cannot be omitted. The
length of the API-Key for access control is application-specific
and the security considerations are outside of the scope of this
paper. Considering the CoAP message size, large messages can
be transmitted with CoAP Block transfer -mechanism, however
this would increase the agent migration latencies.

IV. APPLICATION PROGRAMMING INTERFACE
The API facilitates both inter-device and inter-agent

communications, where the implementation is specific to
programming language, operating system and the device
platform. We follow the agent execution management interface
outlined in [10], but we consider the basic methods of HTTP
and CoAP protocols for Web-connectivity. Lastly, we outline
system design considerations for the REST-based approach.

The API methods provide the following functionality: basic
communication primitives, agent composition serialization,
agent control, resource binding and task execution methods.
See Figure 1. The communication methods relate to the HTTP
and CoAP methods [11], with additionally content negotiation.
Therefore, the agent transfer and agent messaging protocols are
same, realizing the requirement for a uniform interface. The
communication primitives, resource binding and serialization
methods are used by the hosting devices. Mapping, task
execution and control methods are utilized by the execution
environment (EE) in the hosting devices.

Post. This method is used to transmit the agent to the next
participating device based on the resource segment addresses,
through the communication API of the device.

Get. This method is used to respond to local resource
queries and to request remote and static resource
representations. With the remote resources, it may be needed to
first perform resource lookup into the name server.

Delete. This method deletes the task from the hosting
device, effectively removing the agent from the system.

Register / Unregister. This method registers the device, its
resources and capabilities into a name server, or removes the
entries from the name server. Whenever the device is hosting
an agent, its URL, i.e. the name with the device address, is
registered into the name server. This allows dynamic lookups
for the mobile agent and its state. The address of the name
server should be globally known by the system devices.

Marshal / Unmarshal. These methods handle the
serialization or de-serialization of the data structure in device
memory into the agent messages, to be utilized by the device
communication API. This internal data structure is used to store

the binding of the remote and local resources before and after
the task code execution.

Map / Unmap. This method will map the internal data
structure of local and remote resources to variables into the
device memory utilized to construct a runnable code object.
Unmapping will retrieve the updated data from the device
memory after the code execution and update the internal data
structure accordingly.

Execute. This method will execute the runnable task code
object.

Getter. This method is used to retrieve the intermediate
state of the task from the hosted agent, to answer agent state
requests from other system devices.

Stop. This method can be called within the EE to stop the
task execution and immediately transfer the agent. This allows
the agent to control its’ own execution from the task code.

A. System Design Considerations
As a part of IoT, WSN middleware should facilitate general

and non-specific design solutions for applications. When
connecting WSN to IoT, three approaches are discussed in [4]:
a single gateway in between networks, dual-mode WSN nodes
with several network interfaces in mesh topology and Internet
access in one-hop through Wi-Fi access points.

A number of interaction models for WSN programming and
resource access in general have been presented in literature:
client / server, publish / subscribe, code migration, task
offloading, MapReduce, cyber foraging, virtual machines and
macroprogramming languages. When some of these are not
feasible for the most resource-constrained WSN nodes, they
can be considered use cases for interoperable mobile agents.
With the flexible structure of the resource segment, devices and
intermediates can modify the agent composition. When the
agent migrates, the state and resource requests from the other
agents and devices facilitate the client / server -paradigm. The
publish / subscribe -paradigm can be achieved by CoAP
Observe –mechanism within and from the WSN. MapReduce
can be implemented by cloning the agent, or by broadcasting
the resource requests to the system devices. Partitioning the
code into smaller computational units can be considered before
sending the task to the devices. Macroprogramming languages
are fairly supported as the high-level code abstractions and
primitives can be introduced to the system as on-demand task
code, exposed as global system resources and accessed from a

Figure 1. The interfaces to access resources and run agents.

1717

repository. Then, these primitive’s representations can be
considered methods or links in the code.

With the REST-based approach, we are able to expose the
computational task itself and its intermediate or final result as
system resources. The agent composition, or parts of it, can be
exposed also, which other devices or agents can then utilize in
their tasks or compositions through the references. This way,
we provide code re-usability and modularization, furthermore
allowing partitioning the computational task into smaller units,
to distribute the computational load into the available system
configuration. Moreover, the dynamic modification capability
assists in adapting to system configuration changes in runtime
and network or device failures. The mapping between RESTful
Web Services API to the resources in WSN follows easily, as
CoAP is as well based on REST principles and provides URIs
for the resources and content negotiation. This enables direct
access to the WSN resources from the Web and client / server
communication to the in-network services in the WSN,
ultimately facilitating human-machine interactions.

B. Controlling the Mobile Agent in System Devices
Next, we present examples of the REST API use for mobile

agent creation and control, and for resource access based on
HTTP requests to the proxy.

1) GET http://proxy_addr/resource
This request will first locate the hosting device for the

resource identified by the resource from the resource directory,
and then query its state from the hosting device. Error is
returned if no such resource exists in the system. The parameter
resource can present an agent name, in which case the hosting
device returns the agent state.

2) POST http://proxy_addr/resource/agent_name
Here, we inject an agent into the system. This request is

used when the proxy exposes application-specific resources,
which require mobile agent creation to be utilized. If no agent
composition is provided in the message body, the agent will
make a resource lookup, based on the agent_name into the
code repository and resource to the name server. If the
resources are found, the agent can compose the agent
automatically from these resources. If the resource element is
omitted, both lookups are based on the agent_name.

If the agent composition is included, and message
translation is required, the existing resource addresses are
inserted into the CoAP message in given order, but HTTP
addresses last. The state segment is inserted into the message
payload, whereas static resources as are inserted as message
options. In case of code references, proxy may retrieve the code
from the repository or leave the reference into the message.
Otherwise the code is added as it is.

3) DELETE http://proxy_addr/agent_name
This method will first locate the hosting device for the

agent identified as agent_name, and then requests the agent
deletion from the device and from the resource directory.

4) POST http://repo_addr/ agent_name?type={platform}
This request will inject the particular code to the repository,

for the given platform identifier, for lookups. The code itself is
included in the message body.

5) Additional query parameters
We introduce additional query parameter: device={list of

devices}, with the list of the unique identifiers of the devices
located from the resource directory, to directly manipulate
agents and resources in these particular devices. The proxy will
then only send GET and POST requests to these devices only.
This also applies to the resource segment in the agent
composition.

We also included a number of HTTP headers for content
negotiation and controlling the access. Currently, we support
Content-Type, Authorization and API-Key headers.
Authorization allows access to the application-specific proxies
in general and the API-Key allows access to the particular
system resource or device.

V. REAL-WORLD SYSTEM PROTOTYPE
We have implemented our first system prototype with the

mobile agents. We utilized Android 4.0 smartphones, Samsung
Galaxy S III, as general-purpose IoT devices communicating
with HTTP over Wi-Fi in 2.4 GHz band. On the other end, we
have a real-world IP-based WSN atop 6LoWPAN in 868 MHz
band [14]. The WSN node platforms are ATmega 1284P and
2560 8-bit microcontroller-based embedded devices, running in
18 MHz with 8 or 16 Kb of RAM. The nodes communicate by
CoAP.

We have described the system architecture, in Figure 2, in
our earlier work [13-14], which is generally based on the
framework in IETF CoRE Working Group [11] and on
continuations as the abstraction of the mobile agent. We
utilized the resource directory (RD) in [15] as a name server to
store the system resource descriptions. The Java-based proxy
component abstracts and exposes the WSN as a RESTful Web
service conforming with the presented API, translates the
HTTP requests to corresponding CoAP messages and also the
agent composition between message formats. A code
repository is bundled with the proxy to host the task codes for
the WSN nodes. The code in the repository is accessed through
the RD as any other system resource. The agents migrate in the
IoT devices as JSON data structure and in the WSN as CoAP
messages.

Figure 2. Prototype system architecture.

1818

We implemented an EE for the Android 4.0 in Java,
supporting scripting languages JavaScript and Python as the
task code. The SL4A Scripting Layer for Android, with Rhino
(JavaScript) for Android and Python for Android, is used to run
the scripts. The application listens to incoming HTTP requests
based on the presented API, which will then invoke the system
services: the communication API to handle the message for
access both the local and remote resources and the particular
engine to execute the script code. The application size for the
Android EE is 5.02 megabytes.

For the WSN nodes, we implemented the EE in C language.
When the agent message is received, the state segment is
copied into a shared memory in RAM. The local and remote
resources are accessed by the EE through the communication
API and the retrieved values stored also into the shared
memory. The shared memory is accessed in the code through
16-bit pointers as variables. Then, a lookup is performed to find
if the agent code already exists in a slot the program memory;
if it exists, the code is executed by a function call, otherwise
the code is first flashed into a particular slot in the memory. In
case of code reference, the code is first retrieved from the
repository. The agent code in WSN is in the precompiled
IntelHEX binary format. For example, the binary footprint size
is 20 bytes for memcpy() function, which can be used for
copying a memory chunk from the shared memory into the
agent composition. The ATmega architecture allows self-
programming of the program memory (Flash) without resetting
the device by a function in the boot loader section, a crucial
feature for the implementation of this work. A C language
header file defines the pointers to sections in shared memory in
RAM for each segment in the agent composition and the
address of the function stop() in the EE program memory. The
binary size of the EE is 28864 bytes, including the memory
section for the task codes, consuming 3850 bytes of RAM. The
ATmega data sheet gives the maximum write time to the
program memory (Flash) being 4 ms.

VI. EVALUATION
We conducted the small-scale evaluation of the agent

operation latencies in the real-world prototype in Figure 2. We
conducted 100 experiments with injecting mobile agents into
the system with both migration policies. The agents updated
state segment with local resource data in each migrated device.
As the task code, we utilized the memcpy() function in the
WSN nodes, and implemented a Python script for Android. The
remote resource segment contained one resource to evaluate
access latencies. The static resource segment was omitted. The
CoAP message size for the agent composition was 62 bytes
(with 4 byte IPv6 addresses) and the size of JSON data
structure of 468 bytes.

We measured the latencies in communication, resource
access between the system devices, agent migration and for the
computational overhead in task execution, see Table III. The
migration latencies have been indirectly calculated from the
proxy measurements, because the other clocks were not
synchronized. We did not consider the agent creation latencies,
as in the prototype the agents were created by the proxy, but
the agent creation latencies are dominated by the number of
resource lookups and should linearly increase as in [17]. The

RD access latencies are considered the same as proxy latencies
as they were deployed into the same computer, but differing
from the device to device resource access latencies. During the
evaluation, we experienced considerably varying network
conditions in the Wi-Fi, therefore the smartphone to
smartphone results are only indicative. In the WSN, the
average ping message round-trip time for single-hop distances
was 213 ms.

Resource access. We measured the latencies accessing
resources from smartphone to another smartphone, smartphone
to WSN node though the proxy, from proxy to the WSN node
and from WSN node to another. The third measurement gives
the latency for any Internet device to access the WSN
resources. This included the request processing time in the
hosting device. The message translation times in proxy were
omitted, but the HTTP and CoAP GET request message sizes
were 117 with additional headers and 8 bytes.

Computational overhead. Here we measured the
computational latency of executing the agent task code. The
platform-specific latencies include time for system service
invocation, marshaling and mapping the composition, running
the code and recomposing of the message. In the WSN nodes,
no system services needed to be invoked. The execution
overhead in WSN, measured approximately as 330 ms, is
generally the same for any agent or message handling. For the
Android EE, the overhead for resources access was 20 ms and
script execution time was 315 ms. For the resource access in
the Android EE, it is not needed to invoke any extra system
services. We did not consider in the prototype large agent
compositions or messages with large payload.

Agent migration. This includes the overhead of agent
registration into the RD by the hosting device, sending the
agent message to the next device and waiting for
acknowledgement, after which the agent is deleted from the
memory. This does not include the computational overhead or
resource access latencies. The HTTP POST request header size
was 118 bytes with additional headers and 4 bytes for CoAP
header. Comparing this result to the previous work in [7, 16],
the prototype demonstrates 50-70% faster agent migration
times over single-hop distances, but without guaranteed
reliability and with smaller message size and payload.

TABLE III. LATENCIES IN THE MOBILE AGENT OPERATION

Operation Median Message size
Resource Access Tr (ms) bytes
Smartphone - Smartphone 1419 117
Smartphone - Proxy - WSN node 880 117 -> 8
Proxy - WSN Node 599 8
WSN Node - WSN Node 798 8
Computational Overhead Tk (ms) bytes
Smartphone 315 (20) 586
WSN Node 330 66
Agent Migration Tm (ms) bytes
Smartphone - Smartphone 2409 586
Smartphone - Proxy - WSN node 1856 586 -> 66
Proxy - WSN Node -Proxy 1299 66
WSN Node – WSN Node 1302 66

1919

A. Conclusive Real-world Evaluation
We propose a generic evaluation method for conclusive

real-world evaluations in mobile agent-based systems.
Otherwise, conclusive evaluation would be difficult to conduct,
as the task configuration, device deployment, the required
resources and their locations are largely application-specific
[17], here additionally spanning over disparate networks. These
equations are simplified as varying communication latencies,
changing network conditions, device failures and resource
availability are not considered.

In equation (1), we calculate the cost C of communication
and task execution in particular execution environment k,
taking into account the different resource utilization types in
the agent data structure:

� ,)1(mkrk TTTrC ���� � ����

where r is the number of remote resources, Tr is the response
time for remote and static resource requests, Tk is the
computational overhead and Tm is the agent migration time. Tr
is added once for agent registration. The local resource
response time is considered negligible.

The equation (2) gives the total migration costs CTotal, for a
particular agent-based service. This includes the response time
for static resource requests, where s is the number of static
resources, and including the number of disparate networks d.
The agent migration time between networks is given as Tm,d for
Cm,d . We include the time of message translation in the proxy
as Tp. The number of devices running each execution
environment is n:

� � �.)(
1

,� ��
	

����
d d n

ndmprTotal CCTsTC � �
��

Considering the evaluation agent in the prototype system in
Figure 2 and our evaluation results, we can estimate the total
service migration cost (d=2, n=2, s=0, r=1) with the above
formulas, see Table IV. The overhead is proportional to the
number of migrated devices and remote resource accesses.
With these network conditions, the remote resource access
times, 4434 ms, contribute 28% of the total cost. Therefore the
remote resources, imaginably hosted in devices over disparate
networks, should in the system design be considered as static or
local resources as much as possible. Resource caching in the
proxy, with indirectly calculated total access time 1100 ms,
would significantly reduce (75%) the overhead. However, for
improving service response times the agent states are always
available for resource queries in this approach.

VII. RELATED WORK
We consider the previous work with agent-based

architectures for IoT. In [5], the authors envision agent-based
IoT system architecture, where an agent represents each
resource, monitoring and coordinating the resource use through
specific roles. The tasks are written in a rule-based language,
where the agents provide system configuration for the tasks and
react to configuration changes. Semantic queries used for
resource discovery. In [6], a multi-layered agent-based
architecture for smart objects is presented, where a coordinator
controls the agents in hosting devices. System heterogeneity is
abstracted by layers and the coordinator solely communicates
directly with the other smart objects or system devices. In [7],
agents are used as gateways to access heterogeneous devices
and communication protocols in IoT, enabling interoperability,
context-awareness and one-to-many communication with
centralized group management. In [8] is presented a multi-
agent platform for embedded systems based on the Java Virtual
Machine. The device platforms have static system agents
providing interfaces to the system services and dynamic service
agents running the smart home applications. In Agilla [9],
mobile agents wait for specific events and when the event fires,
agent migrates to the source node to run event-based task.

Next, we consider the previous work of programming WSN
with mobile agents. In [16], Java-based mobile agent
framework for SunSPOT is implemented, where agents are
modeled as multi-plane event-based state machines. System
components offer services for communication, agent control
and notably for timing agent operations. The agent state
transitions, i.e. computations, occur in response to events and if
a condition holds, then new events can be emitted
asynchronously. Evaluation of the framework with a real-time
application for wireless body sensor networks is also provided.
In [18], the authors present reference system architecture with
coordinator nodes connected to the Internet, based on the work
in [16]. Coordinators enable registered applications to receive
events from the sensor nodes, provide means for register new
sensors and services. For the sensor nodes, coordinators
provide the abstractions of the system resources and a set of
data processing tasks. The coordinator is very similar to the
proxy functionality presented in this paper. In [19], platform-
independent framework for mobile agent-based applications in
collaborative wireless body sensor networks is presented. An
agent is installed in the system devices to run the tasks as
recipes. Task execution is controlled through API with specific
messaging protocol, providing system adaptation. The publish /
subscribe -paradigm is used for data dissemination.

Flexeo [20] provides layered architecture to connect WSN
to IoT with Sensors and Actuators layer, Coordination layer
and Supervision layer. The WSN architecture is multi-hop with
sink nodes connected to the upper layer. The lowest layer
provides data aggregation. The Coordination layer, based on
OSGi, abstracts the WSN by REST API, allowing queries for
device type or identifier. The intelligence is provided as
domain-based rule sets triggering actions, where OSGi bundles
are used for programming. The layer also handles connections
to disparate networks. The Supervision layer provides
centralized GUI for global view of the system.

TABLE IV. AGENT MIGRATION TIMES IN PROTOTYPE SYSTEM

Evaluation
Agent

Cn

(ms) Tp (ms) Tm,d

(ms)
Cm,d

(ms) CTotal (ms)

Wi-Fi 4423 1 1856 5009 16044 WSN 2830 1 3782

2020

In comparison, we present a novel, language- and platform
independent, agent composition for heterogeneous systems.
Our approach is based on open standards for communication
over disparate networks and for collaboration support without
specific interaction protocols or middleware. The system
architecture is flat and is not restricted to specific interaction
model. Centralized system configuration or management is not
facilitated and we do not apply any specific system or task
configuration into the devices, but we expose the agent
composition into the system. We facilitate dynamic interlinked
many-to-many communications despite the roles of the agent
or devices. Furthermore, we utilize REST principles for agent
migration, agent control and exposing system resources to the
Web, realizing the same protocol for agent transfer and
messaging. Lastly, although Java software components are
modular, portable and provide object-oriented features for
programming, virtual machine-based solutions may be too
heavy for the most resource-constrained embedded devices.
We omitted the discussion of the integration of WSN to the
Web, as we follow IETF CoRE WG’s work.

VIII. DISCUSSION AND FUTURE WORK
This work demonstrated the integration of IoT and WSN

with mobile agents. The expected benefits include: agent-based
adaptable service composition is facilitated, the computational
load is distributed, locality can be exploited in communication
and system resources are exposed to the Web for human-
machine interaction.

In a real-world prototype system, we utilized a proxy
component as a gateway to connect IP-based multi-hop WSN
nodes to Internet, whereas generic IoT devices are directly
connected through Wi-Fi. However, we only considered IP
protocol stack here. In the agent migration we utilized
straightforward migration policies and did not consider, for
example, device or network failures, varying network
conditions, requiring more sophisticated and reliable agent
migration methods. Caching would also significantly reduce
the experienced latencies. The formulas presented in Section V
are very generic, but nevertheless can offer assistance in
application-specific system design and service response time
estimations. Additional system-specific parameters should be
introduced to real-world evaluations. Currently, data streaming
is not supported and the real-time capabilities are unknown.
The security and privacy issues were omitted in this work. The
future work includes deployments in real-world environment
and evaluation with novel mobile agent-based applications.

REFERENCES

[1] L. Atzori, A. Iera and G. Morabito, “The internet of things: a survey,”
Computer Networks, vol. 54, no. 15, October 2010, pp. 2787-2805.

[2] W. Li, J. Bao and W. Shen, "Collaborative wireless sensor networks: a
survey," In: IEEE International Conference on Systems, Man, and
Cybernetics, pp.2614-2619, Anchorage, AL, USA, October 9-12, 2011.

[3] M. Gomes, H. Paulino, A.Baptista and F. Araújo, “Dynamic interaction
models for web enabled wireless sensor networks,” In: 10th IEEE
International Symposium on Parallel and Distributed Processing with
Applications, pp. 823-830, Madrid, Spain, July 10-13, 2012.

[4] C. Delphine, A. Reinhardt, P. Mogre and Ralf Steinmetz, "Wireless
sensor networks and the Internet of Things: Selected challenges," In:
Proceedings of the 8th GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze, pp. 31-34, Hamburg-Harburg, Germany, August 13-14,
2009.

[5] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin and V. Terziyan,
”Smart Semantic Middleware for the Internet of Things,” In:
Proceedings of the 5th International Conference on Informatics in
Control, Automation and Robotics, Intelligent Control Systems and
Optimization, pp. 169-178, Funchal, Portugal, May 11-15, 2008.

[6] G. Fortino, A. Guerrieri, and W. Russo, "Agent-oriented smart objects
development," In: 16th IEEE International Conference on Computer
Supported Cooperative Work in Design, pp. 907-912, Wuhan, China,
May 23-25, 2012.

[7] I. Ayala, M. Amor, and L. Fuentes, "An agent platform for self-
configuring agents in the Internet of Things," In: 3rd International
Workshop on Infrastructures and Tools for Multiagent Systems,
Valencia, Spain, June 5, 2012.

[8] E. Kazanavicius, and L. Ostaseviciute, “Agent-based framework for
embedded systems development in smart environments,” In: 15th
International Conference on Information and Software Technologies, pp.
194-200, Kaunas, Lithuania, April 23-24, 2009.

[9] C. Fok, G. Roman and C. Lu, “Agilla: A mobile agent middleware for
self-adaptive wireless sensor networks,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 4, no. 3, 16, 2009.

[10] I. Satoh, “Mobile agents,” In: Nakashima et al (eds.) Handbook of
Ambient Intelligence and Smart Environments, Springer, 2010, pp. 771-
791.

[11] Constrained RESTful Environments. (Accessed: 3rd August 2013).
https://datatracker.ietf.org/wg/core/charter/.

[12] A. Fuggetta, G. Picco and G. Vigna, "Understanding code mobility,"
IEEE Transactions on Software Engineering, vol. 24, no. 5, May 1998,
pp. 342-361.

[13] T. Leppänen, P. Närhi, J. Ylioja, J. Riekki, Y. Tobe and T. Ojala, “On
using continuations in wireless sensor networks,” In: 9th International
Conference on Networked Sensing Systems, pp. 1-2, Antwerp, Belgium,
June 11-14, 2012.

[14] T. Leppänen, J. Ylioja, P. Närhi, T. Räty, T. Ojala and J. Riekki,
“Holistic energy consumption monitoring in buildings with IP-based
wireless sensor networks,” In: 4th ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings (BuildSys2012),
pp. 195-196, Toronto, Canada, November 6, 2012.

[15] M. Liu, T. Leppänen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
and T. Ojala, “Distributed resource directory architecture in machine-
tomachine communications,” In: IEEE WiMob 2013, Workshop on
Internet of Things Communications and Technologies, Lyon, France,
October 7-10, 2013. [To appear].

[16] F. Aiello, G. Fortino, R. Gravina and A. Guerrieri, ”A Java-based Agent
Platform for Programing Wireless Sensor Networks,” Computer Journal,
vol. 54, no. 3, March 2011, pp.439-454.

[17] S. Malek, N. Medvidovic and M. Mikic-Rakic, “An extensible
framework for improving a distributed software system's deployment
architecture,” IEEE Transactions on Software Engineering, vol. 38, no.
1, January- February 2012, pp. 73-100.

[18] F. Aiello, F. Bellifemine, G. Fortino, S. Galzarano and R. Gravina, “An
agent-based signal processing in-node environment for real-time human
activity monitoring based on wireless body sensor networks,“ Journal of
Engineering Applications of Artificial Intelligence, vol. 24, no. 7,
October 2011, pp. 1147-1161.

[19] G. Fortino, A. Guerrieri, F. Bellifemine and R. Giannatonio, “Platform-
independent development of collaborative wireless body sensor network
applications: SPINE2,” In: IEEE International Conference on Systems,
Man, and Cybernetics, pp. 3144-3150, San Antonio, TX, USA, October
11-14, 2009.

[20] J. Vazquez, A. Almeida, I. Doamo, X. Laiseca and P. Orduña. "Flexeo:
an architecture for integrating Wireless Sensor Networks into the
Internet of Things." In: Corchado et al (eds.) Advances in Soft
Computing, , vol. 51, pp. 219-228, Springer, 2009.

2121

