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Abstract—We demonstrate interoperable mobile agents to 
integrate Internet of Things and wireless sensor networks with 
resource-constrained low-power embedded networked devices. We 
introduce adaptable composition for the mobile agent, complying 
with the Representational State Transfer principles, which are 
then used for agent migration, controlling the agent and exposing 
the data, system resources, tasks and services, to the Web. We 
gather requirements for the system and heterogeneous networked 
devices and present an application programming interface to 
enable mobile agents in these systems. The agents are 
demonstrated in a real-world prototype with smartphones and 
embedded networked devices, where we utilize a proxy component 
to expose system resources to the Web for human-machine 
interactions. Spanning over disparate networks and protocols, the 
proxy translates messages including the agent composition, 
between HTTP and Constrained Application Protocol. Lastly, we 
suggest an evaluation method for the agent communication and 
migration costs, considering the different types of system 
resources and utilization. 

Keywords— Mobile Agent, Interoperability, Collaboration, 
Internet of Things, Wireless Sensor Networks, Constrained 
Application Protocol 

I.  INTRODUCTION 
The Internet of Things (IoT) refers to globally connected 

and interactive network of physical and virtual devices, 
featuring the integration of disparate technologies and 
distributed intelligence [1]. The IoT systems require scalability 
beyond millions of devices, where centralized solutions easily 
reach their bounds. To achieve global connectivity, 
standardized protocols and interfaces are necessity to address 
device heterogeneity and to enable universal access. Resources 
provided by the IoT devices need to be globally identified, 
addressable and discoverable. Information about services, their 
functionality and interfaces needs to be discoverable. The 
services should be loosely-coupled and support mobility, but at 
the same time maintain quality of service constrains. Moreover, 
wireless sensor networks (WSN) with limited resource 
capabilities, can provide application-specific services as a 
single entity or collaborate as a part of IoT [2, 3]. In IoT, WSN 
can be utilized to collect contextual and environmental 
information [4] and to monitor phenomena and interactions. 
WSN introduce their own requirements, such as lightweight in-
network services and low operating system and communication 

overhead, where energy consumption is the main concern. 
Therefore, in the collaborative WSNs, the key issue is how to 
design collaboration modes for resource-constrained WSN 
nodes that could optimize the resource utilization [2]. These 
collaborative systems cannot be instantiated and configured 
once before deployment, as the devices, services, applications 
and system configurations are in continuous transition. In the 
runtime deployment of components and composition of 
services, it is needed to consider software adaptation and 
evolution to cope with environment and requirement changes. 
The major issues here include interoperability between 
different standards, protocols, data formats, resource types, 
heterogeneous hardware, software components, database 
systems and finally human operators [5].  

In this context, agent-based systems provide de-
centralization and flexibility in the system configuration, 
abstracting heterogeneous subsystem for integration, 
cooperative multi-agent systems and high-level abstractions of 
system resources [2, 5-9]. Agents act autonomously, possess 
self-properties and allow the direct manipulation of the hosting 
device. Mobile agents, i.e. autonomous programs that transmit 
their execution state from device to device in networked 
systems where the execution of the program then continues, 
provide robustness, adaptation and evolution. Communication 
costs are reduced when distributed data processing is moved 
close to the data source, software components are deployed 
dynamically and tasks are executed asynchronously [2, 10].  

However, this complexity of interactions cannot be 
anticipated by humans, which greatly complicates the system 
design and eventually requires the use of metadata and 
ontologies [5]. The role of humans should be minimal in 
system management, but also in its behavioral control and 
coordination [5].  Nonetheless, humans play important roles, 
chancing them depending on the context; as users, as resource 
managers, as service providers and as system administrators. 
Therefore a “smart interface” is required for humans to access 
various services and applications [5]. For human-machine 
interactions, abstracting IoT system and WSN as Web Services 
has benefits: various visualization services for simplified data 
search, retrieval and aggregation, access to contextual 
information, uniform interfaces for resource access and linked 
stateful resources [3, 5].  

This work was conducted in the MAMMotH Project, funded by Tekes.  
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This paper presents interoperable mobile agents to provide 
collaboration and interoperability in IoT and programmable 
WSN, facilitating both heterogeneous IoT devices and low-
power resource-constrained WSN nodes. This topic has 
received little attention so far. Adaptable composition is 
suggested for the mobile agent, where the composition is based 
on Representational State Transfer (REST) principles, 
additionally used for agent migration, controlling the agent and 
for system resource access. Moreover, we present an 
application programming interface (API) and system 
architecture components to enable interoperability. A proxy 
component allows connectivity between disparate networks 
and translates the messages, including the agent composition, 
between HTTP and Constrained Application Protocol (CoAP) 
[11]. The proxy additionally enables Web service access to the 
system resources, enabling human-machine interactions.  

The rest of the paper is organized as follows. Section II 
describes the requirements for interoperable mobile agents in 
IoT and WSN. In Section III, is presented the mobile agent 
composition.  In Section IV, we present the API for utilizing 
mobile agents in heterogeneous systems and system design 
considerations. A real-world prototype enabling these mobile 
agents is demonstrated in Section V and evaluated in Section 
VI. Section VII gives the related work and, in Section VIII, we 
discuss this approach and the future work.  

II. REQUIREMENTS FOR MOBILE AGENTS 
We gather the requirements for interoperable mobile agents 

in heterogeneous resource-constrained embedded networked 
devices. We also consider the REST principles in the agent 
composition, migration and control.  

Scalable system configuration. In IoT, the systems are 
scalable beyond current networked systems. It is assumed a 
vast number of devices and tasks running in parallel, 
consuming the dynamically available system resources in 
competitive manner. Therefore, distributed architecture is 
necessity, services should be loosely-coupled and 
computational load distributed among the devices. Gateways 
and proxies are introduced to allow access to abstracted 
resources and heterogeneous subsystems far away, spanning 
over networks, protocols and communication interfaces. 

Abstracted system resources. System resources, hosted by 
the devices, are the main abstraction in REST, consisting of the 
resource URL, its state and various representations. Here, the 
computational task is abstracted as the agent composition, 
whose state is the representation of the intermediate task result. 
The agent includes the actual functionality, i.e. the computation 
code, to create in-time representations of the task state.  

Abstracted heterogeneous devices. The system devices 
expose the available resources based on their dynamic 
capabilities. These local and global resources include data, 
hosted resources and particular device capabilities. The device 
is utilized through basic, standardized, communication 
primitives with unified interfaces, where the primitives should 
be interface and protocol independent.  

Standard interfaces. Standard, unified and simple 
interfaces are required to address device heterogeneity, 

resource abstraction and for universal access. To enable access 
from the Web, HTTP interface or a proxy component is 
required. To simplify the system implementation, the agent 
transfer and agent messaging protocols should be the same, 
based on the basic communication primitives.  

Dynamic binding of system resources. The devices are 
simultaneously servers for their local resources and clients for 
the resources hosted by other devices. The agents should, as 
abstract compositions, allow dynamic binding to resources and 
dynamic mapping of the task into any system configuration for 
the lifetime of the task. In distributed systems, with 
heterogeneous devices the support for different types of 
resource bindings is required, even simultaneously for varying 
resource types. The agent composition should, in general, be 
exposed to the system by the devices and be modifiable and 
adaptable. Runtime lookups and loose coupling to the resources 
is facilitated by stateless communication.  

Dynamic agent deployment. As the IoT systems are in 
continuous transition, runtime injections of agents into the 
system are common and the agent life-cycle is application- 
dependent. Therefore, the agent composition needs to adapt and 
be robust.  

Lightweight mobile agent. The agent must be lightweight 
in composition, serializable, transferable as a whole or as 
sequential parts and executable in embedded devices with 
limited processing power, memory, communication capabilities 
and battery lifetime. For the most resource-constrained devices 
binary message formats are necessity.  

Shared task state. The devices maintain their resource and 
capability states, the agents maintain their task states, which 
both are then collaboratively utilized by other agents. As the 
task state is not tightly-coupled into a physical device, the 
agent provides some robustness and the task state is cacheable. 

III. MOBILE AGENT  
We present the agent composition model, facilitating 

dynamic system configuration based on available resources and 
modifying the composition in runtime. The agent composition 
is based on the mobile code execution unit description in [12]: 
code segment, data space and execution state. To comply with 
the REST principles and Web Services paradigm, we refer to 
these as code, resource and state segments. In the following, we 
elaborate the composition and present the detailed use of the 
mobile agents in heterogeneous device platforms. The 
composition is illustrated in Table I. In addition to the given 
three segments, the data structure includes an unique name for 
the agent to allow dynamic lookups in runtime. The segments 
may also include metadata, such as the last time the agent state 
was updated or the keys for system and resource access. 

Code segment. The computation task code is stored into 
and accessed from the code segment, which can be static but it 
is not required. The code can be presented in any programming 
language: high-level macroprogramming language, scripting 
language, precompiled intermediate code such as bytecode or 
even as machine language instructions. The code segment 
facilitates including the code, with known type parameter, in 
several different programming languages, being intended for 
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multiple heterogeneous devices or execution environments 
simultaneously, regardless of the devices operating systems or 
hardware. Additionally, to minimize message size, this segment 
can include a reference to the location of the code for on-
demand retrieval. This addresses the device heterogeneity. 

Resource segment. The resource segment contains the 
local, remote and static resources for the task execution. The 
local resources refer to the resources offered by the hosting 
device and remote are external to the hosting device. The static 
resources are remote and static during the lifetime of the agent. 
These resources are then mapped to the code in the code 
segment as variables. The resource references are presented as 
URLs, with device address and resource name, to comply with 
Web and REST principles. The remote resources should be 
addressed using global identifiers, as they should be shareable 
and globally accessible from anywhere in the system. 
Additionally, access control can be applied in context of the 
current task or application. The metadata can contain the access 
interface and content-type of the resource. The hosting device 
then needs to bind to the local resources and retrieve the remote 
and static resource representations when it receives the agent. 
In case of static resource, the representation is requested only 
once and moved into the state segment as a constant.  

The resource access allows binding-by-identifier, binding-
by-value and binding-by-type [12] applied to the system 
resources. When binding-by-identifier, the agent requests 
resource representation from particular device or other agent. 
When binding-by-value, the agent requests the representation 
from any device hosting the resource through a name server. 
When binding-by-type, it requests the representation of any 
system resource of the specific type. Re-binding to the remote 
resources is required whenever the agent migrates from a 
device to another. The resource segment therefore presents 
dynamic and partial view of the system resources utilized by 
the agent. 

Here, we have two options for storing the resource segment 
contents as list. First, the list does not exist outside the agent. 
Secondly, the list can be exposed as a system resource. Then, 
devices can request the participating device addresses from the 
hosting device with a resource query or utilize it as “home 
location” for the resources. This additionally allows network 
devices, proxies or gateways to modify the resource segment 
outside the agent composition to adapt to runtime changes in 
the system configuration. The agent may utilize the resource 
segment in multiple migration policies freely.  

State segment. The state segment maintains the current 
state of the agent, i.e. the intermediate or final result of the 
computational task. In the hosting device, the agent is 
registered into the name server while migrating in the system, 
allowing resource queries for the agent state. Other local data, 
such as program counter, variables and static resources are 
moved to this segment, as unattached resources from the 
resource segment once the representations are known. These 
resource representations are later mapped into the task code as 
variables. This segment allows all data types or data structures 
to be used, depending solely on how the task code handles 
these variable types. Even different and multiple types of the 
same data can be used for different programming languages.   

Agent mobility. The local resource segment describes how 
the agent migrates in the system. By utilizing the local resource 
URLs, the agent migrates from the device hosting the particular 
resource to another device. Moreover, we introduced two 
migration policies, thus the agent mobility is resolved by the 
local resource segment and the given migration policy. If the 
policy is “service”, then the agent migrates to each device the 
local resource segment in turn, until specifically deleted. If the 
policy is “task”, then the agent migrates to each device only 
once. With the “service” policy, the local resource segment is 
considered a ring buffer, where the next resource URL is in the 
top and URLs shuffle from top to bottom. With the “task” 
policy, the URLs are deleted from the segment once visited.  

When migrating, the agent is cloned in the destination 
device, where the state is then updated and the hosting device 
registers the agent into the RD. After successful registration, an 
acknowledgement is sent to the previous host, which then 
deletes the agent from its memory. This is implemented to 
make  sure  that  the  previous  state  of  the  agent  is  always  
available until state update has finished. 

A. Mapping Agent to the CoAP Message Structure  
As CoAP is binary protocol, the agent composition is 

significantly smaller in size than the composition in human-
readable scripting languages and data representations used in 
the Web, such as JSON. The mapping of the agent composition 
into the CoAP message structure is presented in Table II. This 
mapping extends our previous work [13], where we did not 
consider mobile agents. For the IPv6 addresses, we assumed 
globally known prefix (8 or 12 bytes) for the network, which 

TABLE I.  THE MOBILE AGENT COMPOSITION 

Segment Elements 
Name { Agent name, i.e. unique resource name } 
Code Code 

 
{ Task code } 
{ Programming language } 

Reference 
 

{URL} 
{ Programming language } 

Resource Local { Resource list as URLs } 
Remote { Resource list as URLs } 
Static { Resource list as URLs } 

State { State variable list } 
{ Local variable list } 
{ Metadata: API-Key for access control} 

TABLE II.   MAPPING THE AGENT COMPOSITION TO COAP MESSAGE 
STRUCTURE 

Agent Composition CoAP Option No. Size (bytes) 
Mobile Agent Content-type:  

Task / Service 
1 1 

Name Uri-Path (not new)  1 k 
Local resource segment Next Address [0..n] n * 8 (IPv6) 

[0..m] m * 4 (IPv4) 
Metadata: Access control API-Key  1 n 
Task code Code [0..1] n 
Task code reference Code Reference  [0..1] k 
Remote resource segmenta Remote Resource  [0..n] n * (8 + j) 
Static resource segmenta,b Static Resource  [0..n] n * (8 + j) 
State segment Payload 1 n 

a. The address length is 8 bytes and j is the length of the particular resource name 
b. Static resources are not moved into the state segment in the CoAP message 
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has been omitted from the CoAP option address field. We 
utilize the CoAP option Content-type to identify the message as 
mobile agent and its migration policy. Additionally, we 
introduce a number of new CoAP message options to describe 
the agent composition. If the task code is not included in the 
message, the reference contains the resource name for remote 
retrieval, where the programming language type has been 
omitted as it is known by the requesting devices. The code, 
resource and state segments can contain any number of items. 
The state segment is stored as the message payload, being the 
actual transferable content, which cannot be omitted. The 
length of the API-Key for access control is application-specific 
and the security considerations are outside of the scope of this 
paper. Considering the CoAP message size, large messages can 
be transmitted with CoAP Block transfer -mechanism, however 
this would increase the agent migration latencies.   

IV. APPLICATION PROGRAMMING INTERFACE 
The API facilitates both inter-device and inter-agent 

communications, where the implementation is specific to 
programming language, operating system and the device 
platform. We follow the agent execution management interface 
outlined in [10], but we consider the basic methods of HTTP 
and CoAP protocols for Web-connectivity. Lastly, we outline 
system design considerations for the REST-based approach. 

The API methods provide the following functionality: basic 
communication primitives, agent composition serialization, 
agent control, resource binding and task execution methods. 
See Figure 1.  The communication methods relate to the HTTP 
and CoAP methods [11], with additionally content negotiation. 
Therefore, the agent transfer and agent messaging protocols are 
same, realizing the requirement for a uniform interface. The 
communication primitives, resource binding and serialization 
methods are used by the hosting devices. Mapping, task 
execution and control methods are utilized by the execution 
environment (EE) in the hosting devices.  

Post. This method is used to transmit the agent to the next 
participating device based on the resource segment addresses, 
through the communication API of the device.  

Get. This method is used to respond to local resource 
queries and to request remote and static resource 
representations. With the remote resources, it may be needed to 
first perform resource lookup into the name server.  

Delete. This method deletes the task from the hosting 
device, effectively removing the agent from the system.  

Register / Unregister. This method registers the device, its 
resources and capabilities into a name server, or removes the 
entries from the name server. Whenever the device is hosting 
an agent, its URL, i.e. the name with the device address, is 
registered into the name server. This allows dynamic lookups 
for the mobile agent and its state. The address of the name 
server should be globally known by the system devices. 

Marshal / Unmarshal.  These methods handle the 
serialization or de-serialization of the data structure in device 
memory into the agent messages, to be utilized by the device 
communication API. This internal data structure is used to store 

the binding of the remote and local resources before and after 
the task code execution.   

Map / Unmap. This method will map the internal data 
structure of local and remote resources to variables into the 
device memory utilized to construct a runnable code object. 
Unmapping will retrieve the updated data from the device 
memory after the code execution and update the internal data 
structure accordingly. 

Execute. This method will execute the runnable task code 
object.  

Getter. This method is used to retrieve the intermediate 
state  of  the  task  from  the  hosted  agent,  to  answer  agent  state  
requests from other system devices.  

Stop. This method can be called within the EE to stop the 
task execution and immediately transfer the agent. This allows 
the agent to control its’ own execution from the task code. 

A. System Design Considerations 
As a part of IoT, WSN middleware should facilitate general 

and non-specific design solutions for applications. When 
connecting WSN to IoT, three approaches are discussed in [4]: 
a single gateway in between networks, dual-mode WSN nodes 
with several network interfaces in mesh topology and Internet 
access in one-hop through Wi-Fi access points.  

A number of interaction models for WSN programming and 
resource access in general have been presented in literature: 
client / server, publish / subscribe, code migration, task 
offloading, MapReduce, cyber foraging, virtual machines and 
macroprogramming languages. When some of these are not 
feasible for the most resource-constrained WSN nodes, they 
can be considered use cases for interoperable mobile agents. 
With the flexible structure of the resource segment, devices and 
intermediates can modify the agent composition. When the 
agent migrates, the state and resource requests from the other 
agents and devices facilitate the client / server -paradigm. The 
publish / subscribe -paradigm can be achieved by CoAP 
Observe –mechanism within and from the WSN. MapReduce 
can be implemented by cloning the agent, or by broadcasting 
the resource requests to the system devices. Partitioning the 
code into smaller computational units can be considered before 
sending the task to the devices. Macroprogramming languages 
are fairly supported as the high-level code abstractions and 
primitives can be introduced to the system as on-demand task 
code, exposed as global system resources and accessed from a 

 
Figure 1. The interfaces to access resources and run agents. 
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repository. Then, these primitive’s representations can be 
considered methods or links in the code.  

With the REST-based approach, we are able to expose the 
computational task itself and its intermediate or final result as 
system resources. The agent composition, or parts of it, can be 
exposed also, which other devices or agents can then utilize in 
their tasks or compositions through the references. This way, 
we provide code re-usability and modularization, furthermore 
allowing partitioning the computational task into smaller units, 
to distribute the computational load into the available system 
configuration. Moreover, the dynamic modification capability 
assists in adapting to system configuration changes in runtime 
and network or device failures. The mapping between RESTful 
Web Services API to the resources in WSN follows easily, as 
CoAP is as well based on REST principles and provides URIs 
for the resources and content negotiation. This enables direct 
access to the WSN resources from the Web and client / server 
communication to the in-network services in the WSN, 
ultimately facilitating human-machine interactions.  

B. Controlling the Mobile Agent in System Devices 
Next, we present examples of the REST API use for mobile 

agent creation and control, and for resource access based on 
HTTP requests to the proxy. 

1) GET http://proxy_addr/resource 
This request will first locate the hosting device for the 

resource identified by the resource from the resource directory, 
and then query its state from the hosting device. Error is 
returned if no such resource exists in the system. The parameter 
resource can present an agent name, in which case the hosting 
device returns the agent state.  

2) POST http://proxy_addr/resource/agent_name 
Here, we inject an agent into the system. This request is 

used when the proxy exposes application-specific resources, 
which require mobile agent creation to be utilized. If no agent 
composition is provided in the message body, the agent will 
make a resource lookup, based on the agent_name into the 
code repository and resource to the name server. If the 
resources are found, the agent can compose the agent 
automatically from these resources. If the resource element is 
omitted, both lookups are based on the agent_name. 

If the agent composition is included, and message 
translation is required, the existing resource addresses are 
inserted into the CoAP message in given order, but HTTP 
addresses last. The state segment is inserted into the message 
payload, whereas static resources as are inserted as message 
options. In case of code references, proxy may retrieve the code 
from the repository or leave the reference into the message. 
Otherwise the code is added as it is.  

3) DELETE http://proxy_addr/agent_name  
This method will first locate the hosting device for the 

agent identified as agent_name, and then requests the agent 
deletion from the device and from the resource directory. 

4) POST http://repo_addr/ agent_name?type={platform} 
This request will inject the particular code to the repository, 

for the given platform identifier, for lookups. The code itself is 
included in the message body. 

5) Additional query parameters 
We introduce additional query parameter: device={list of 

devices}, with the list of the unique identifiers of the devices 
located from the resource directory, to directly manipulate 
agents and resources in these particular devices. The proxy will 
then only send GET and POST requests to these devices only. 
This also applies to the resource segment in the agent 
composition.  

We also included a number of HTTP headers for content 
negotiation and controlling the access. Currently, we support 
Content-Type, Authorization and API-Key headers. 
Authorization allows access to the application-specific proxies 
in general and the API-Key allows access to the particular 
system resource or device. 

V. REAL-WORLD SYSTEM PROTOTYPE 
We have implemented our first system prototype with the 

mobile agents. We utilized Android 4.0 smartphones, Samsung 
Galaxy S III, as general-purpose IoT devices communicating 
with HTTP over Wi-Fi in 2.4 GHz band. On the other end, we 
have a real-world IP-based WSN atop 6LoWPAN in 868 MHz 
band [14]. The WSN node platforms are ATmega 1284P and 
2560 8-bit microcontroller-based embedded devices, running in 
18 MHz with 8 or 16 Kb of RAM. The nodes communicate by 
CoAP. 

We have described the system architecture, in Figure 2, in 
our earlier work [13-14], which is generally based on the 
framework in IETF CoRE Working Group [11] and on 
continuations as the abstraction of the mobile agent. We 
utilized the resource directory (RD) in [15] as a name server to 
store the system resource descriptions. The Java-based proxy 
component abstracts and exposes the WSN as a RESTful Web 
service conforming with the presented API, translates the 
HTTP requests to corresponding CoAP messages and also the 
agent composition between message formats. A code 
repository is bundled with the proxy to host the task codes for 
the WSN nodes. The code in the repository is accessed through 
the RD as any other system resource. The agents migrate in the 
IoT devices as JSON data structure and in the WSN as CoAP 
messages.  

 
Figure 2. Prototype system architecture. 
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We implemented an EE for the Android 4.0 in Java, 
supporting scripting languages JavaScript and Python as the 
task code. The SL4A Scripting Layer for Android, with Rhino 
(JavaScript) for Android and Python for Android, is used to run 
the scripts. The application listens to incoming HTTP requests 
based on the presented API, which will then invoke the system 
services: the communication API to handle the message for 
access both the local and remote resources and the particular 
engine to execute the script code. The application size for the 
Android EE is 5.02 megabytes. 

For the WSN nodes, we implemented the EE in C language. 
When the agent message is received, the state segment is 
copied into a shared memory in RAM. The local and remote 
resources are accessed by the EE through the communication 
API and the retrieved values stored also into the shared 
memory. The shared memory is accessed in the code through 
16-bit pointers as variables. Then, a lookup is performed to find 
if the agent code already exists in a slot the program memory; 
if it exists, the code is executed by a function call, otherwise 
the code is first flashed into a particular slot in the memory. In 
case of code reference, the code is first retrieved from the 
repository. The agent code in WSN is in the precompiled 
IntelHEX binary format. For example, the binary footprint size 
is 20 bytes for memcpy() function, which can be used for 
copying a memory chunk from the shared memory into the 
agent composition. The ATmega architecture allows self-
programming of the program memory (Flash) without resetting 
the device by a function in the boot loader section, a crucial 
feature for the implementation of this work. A C language 
header file defines the pointers to sections in shared memory in 
RAM for each segment in the agent composition and the 
address of the function stop() in the EE program memory. The 
binary size of the EE is 28864 bytes, including the memory 
section for the task codes, consuming 3850 bytes of RAM. The 
ATmega data sheet gives the maximum write time to the 
program memory (Flash) being 4 ms.   

VI. EVALUATION 
We conducted the small-scale evaluation of the agent 

operation latencies in the real-world prototype in Figure 2. We 
conducted 100 experiments with injecting mobile agents into 
the system with both migration policies. The agents updated 
state segment with local resource data in each migrated device. 
As the task code, we utilized the memcpy() function in the 
WSN nodes, and implemented a Python script for Android. The 
remote resource segment contained one resource to evaluate 
access latencies. The static resource segment was omitted. The 
CoAP message size for the agent composition was 62 bytes 
(with 4 byte IPv6 addresses) and the size of JSON data 
structure of 468 bytes.  

We measured the latencies in communication, resource 
access between the system devices, agent migration and for the 
computational overhead in task execution, see Table III. The 
migration latencies have been indirectly calculated from the 
proxy measurements, because the other clocks were not 
synchronized. We did not consider the agent creation latencies, 
as in the prototype the agents were created by the proxy, but 
the agent creation latencies are dominated by the number of 
resource lookups and should linearly increase as in [17]. The 

RD access latencies are considered the same as proxy latencies 
as they were deployed into the same computer, but differing 
from the device to device resource access latencies. During the 
evaluation, we experienced considerably varying network 
conditions in the Wi-Fi, therefore the smartphone to 
smartphone results are only indicative. In the WSN, the 
average ping message round-trip time for single-hop distances 
was 213 ms.  

Resource access. We measured the latencies accessing 
resources from smartphone to another smartphone, smartphone 
to WSN node though the proxy, from proxy to the WSN node 
and from WSN node to another. The third measurement gives 
the latency for any Internet device to access the WSN 
resources. This included the request processing time in the 
hosting device. The message translation times in proxy were 
omitted, but the HTTP and CoAP GET request message sizes 
were 117 with additional headers and 8 bytes. 

Computational overhead. Here we measured the 
computational latency of executing the agent task code. The 
platform-specific latencies include time for system service 
invocation, marshaling and mapping the composition, running 
the code and recomposing of the message. In the WSN nodes, 
no system services needed to be invoked. The execution 
overhead in WSN, measured approximately as 330 ms, is 
generally the same for any agent or message handling. For the 
Android EE, the overhead for resources access was 20 ms and 
script execution time was 315 ms. For the resource access in 
the Android EE, it is not needed to invoke any extra system 
services. We did not consider in the prototype large agent 
compositions or messages with large payload. 

Agent migration. This includes the overhead of agent 
registration into the RD by the hosting device, sending the 
agent message to the next device and waiting for 
acknowledgement, after which the agent is deleted from the 
memory. This does not include the computational overhead or 
resource access latencies. The HTTP POST request header size 
was 118 bytes with additional headers and 4 bytes for CoAP 
header. Comparing this result to the previous work in [7, 16], 
the prototype demonstrates 50-70% faster agent migration 
times over single-hop distances, but without guaranteed 
reliability and with smaller message size and payload. 

TABLE III.  LATENCIES IN THE MOBILE AGENT OPERATION 

Operation Median Message size 
Resource Access Tr  (ms) bytes 
Smartphone - Smartphone  1419 117 
Smartphone - Proxy - WSN node 880 117 -> 8 
Proxy - WSN Node  599 8 
WSN Node - WSN Node 798 8 
Computational Overhead Tk  (ms) bytes 
Smartphone  315 (20) 586 
WSN Node 330 66 
Agent Migration Tm  (ms) bytes 
Smartphone - Smartphone 2409 586 
Smartphone - Proxy - WSN node 1856 586 -> 66 
Proxy - WSN Node -Proxy 1299 66 
WSN Node – WSN Node 1302 66 
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A. Conclusive Real-world Evaluation   
We propose a generic evaluation method for conclusive 

real-world evaluations in mobile agent-based systems. 
Otherwise, conclusive evaluation would be difficult to conduct, 
as the task configuration, device deployment, the required 
resources and their locations are largely application-specific 
[17], here additionally spanning over disparate networks. These 
equations are simplified as varying communication latencies, 
changing network conditions, device failures and resource 
availability are not considered.  

In equation (1), we calculate the cost C of communication 
and task execution in particular execution environment k, 
taking into account the different resource utilization types in 
the agent data structure:  

� ,)1( mkrk TTTrC ���� � ����

where r is the number of remote resources, Tr is the response 
time for remote and static resource requests, Tk is the 
computational overhead and Tm is the agent migration time. Tr 
is added once for agent registration. The local resource 
response time is considered negligible. 

The equation (2) gives the total migration costs CTotal,  for  a  
particular agent-based service. This includes the response time 
for static resource requests, where s is the number of static 
resources, and including the number of disparate networks d. 
The agent migration time between networks is given as Tm,d for 
Cm,d . We include the time of message translation in the proxy 
as Tp. The number of devices running each execution 
environment is n:  
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Considering the evaluation agent in the prototype system in 
Figure 2 and our evaluation results, we can estimate the total 
service migration cost (d=2, n=2, s=0, r=1) with the above 
formulas, see Table IV. The overhead is proportional to the 
number of migrated devices and remote resource accesses. 
With these network conditions, the remote resource access 
times, 4434 ms, contribute 28% of the total cost. Therefore the 
remote resources, imaginably hosted in devices over disparate 
networks, should in the system design be considered as static or 
local resources as much as possible. Resource caching in the 
proxy, with indirectly calculated total access time 1100 ms, 
would significantly reduce (75%) the overhead. However, for 
improving service response times the agent states are always 
available for resource queries in this approach. 

VII. RELATED WORK 
We consider the previous work with agent-based 

architectures for IoT. In [5], the authors envision agent-based 
IoT system architecture, where an agent represents each 
resource, monitoring and coordinating the resource use through 
specific roles. The tasks are written in a rule-based language, 
where the agents provide system configuration for the tasks and 
react to configuration changes. Semantic queries used for 
resource discovery. In [6], a multi-layered agent-based 
architecture for smart objects is presented, where a coordinator 
controls the agents in hosting devices. System heterogeneity is 
abstracted by layers and the coordinator solely communicates 
directly with the other smart objects or system devices. In [7], 
agents are used as gateways to access heterogeneous devices 
and communication protocols in IoT, enabling interoperability, 
context-awareness and one-to-many communication with 
centralized group management. In [8] is presented a multi-
agent platform for embedded systems based on the Java Virtual 
Machine. The device platforms have static system agents 
providing interfaces to the system services and dynamic service 
agents running the smart home applications. In Agilla [9], 
mobile agents wait for specific events and when the event fires, 
agent migrates to the source node to run event-based task.  

Next, we consider the previous work of programming WSN 
with mobile agents. In [16], Java-based mobile agent 
framework for SunSPOT is implemented, where agents are 
modeled as multi-plane event-based state machines. System 
components offer services for communication, agent control 
and notably for timing agent operations. The agent state 
transitions, i.e. computations, occur in response to events and if 
a condition holds, then new events can be emitted 
asynchronously. Evaluation of the framework with a real-time 
application for wireless body sensor networks is also provided. 
In [18], the authors present reference system architecture with 
coordinator nodes connected to the Internet, based on the work 
in [16]. Coordinators enable registered applications to receive 
events from the sensor nodes, provide means for register new 
sensors and services. For the sensor nodes, coordinators 
provide the abstractions of the system resources and a set of 
data processing tasks. The coordinator is very similar to the 
proxy functionality presented in this paper. In [19], platform-
independent framework for mobile agent-based applications in 
collaborative wireless body sensor networks is presented. An 
agent is installed in the system devices to run the tasks as 
recipes. Task execution is controlled through API with specific 
messaging protocol, providing system adaptation. The publish / 
subscribe -paradigm is used for data dissemination.  

Flexeo [20] provides layered architecture to connect WSN 
to IoT with Sensors and Actuators layer, Coordination layer 
and Supervision layer. The WSN architecture is multi-hop with 
sink nodes connected to the upper layer. The lowest layer 
provides data aggregation. The Coordination layer, based on 
OSGi,  abstracts the WSN by REST API,  allowing queries for 
device type or identifier. The intelligence is provided as 
domain-based rule sets triggering actions, where OSGi bundles 
are used for programming. The layer also handles connections 
to disparate networks. The Supervision layer provides 
centralized GUI for global view of the system.  

TABLE IV.  AGENT MIGRATION TIMES IN PROTOTYPE SYSTEM 

Evaluation 
Agent 

Cn 

(ms) Tp (ms) Tm,d 

(ms) 
Cm,d 

(ms) CTotal (ms) 

Wi-Fi 4423 1 1856 5009 16044 WSN 2830 1 3782 
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In comparison, we present a novel, language- and platform 
independent, agent composition for heterogeneous systems. 
Our approach is based on open standards for communication 
over disparate networks and for collaboration support without 
specific interaction protocols or middleware. The system 
architecture is flat and is not restricted to specific interaction 
model. Centralized system configuration or management is not 
facilitated and we do not apply any specific system or task 
configuration into the devices, but we expose the agent 
composition into the system. We facilitate dynamic interlinked 
many-to-many communications despite the roles of the agent 
or devices. Furthermore, we utilize REST principles for agent 
migration, agent control and exposing system resources to the 
Web, realizing the same protocol for agent transfer and 
messaging. Lastly, although Java software components are 
modular, portable and provide object-oriented features for 
programming, virtual machine-based solutions may be too 
heavy for the most resource-constrained embedded devices. 
We omitted the discussion of the integration of WSN to the 
Web, as we follow IETF CoRE WG’s work.  

VIII. DISCUSSION AND FUTURE WORK 
This work demonstrated the integration of IoT and WSN 

with mobile agents. The expected benefits include: agent-based 
adaptable service composition is facilitated, the computational 
load is distributed, locality can be exploited in communication 
and system resources are exposed to the Web for human-
machine interaction.  

In a real-world prototype system, we utilized a proxy 
component as a gateway to connect IP-based multi-hop WSN 
nodes to Internet, whereas generic IoT devices are directly 
connected through Wi-Fi. However, we only considered IP 
protocol stack here. In the agent migration we utilized 
straightforward migration policies and did not consider, for 
example, device or network failures, varying network 
conditions, requiring more sophisticated and reliable agent 
migration methods. Caching would also significantly reduce 
the experienced latencies. The formulas presented in Section V 
are very generic, but nevertheless can offer assistance in 
application-specific system design and service response time 
estimations. Additional system-specific parameters should be 
introduced to real-world evaluations. Currently, data streaming 
is not supported and the real-time capabilities are unknown. 
The security and privacy issues were omitted in this work. The 
future work includes deployments in real-world environment 
and evaluation with novel mobile agent-based applications. 
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