

Tandem Browsing Toolkit: Distributed Multi-Display
Interfaces with Web Technologies

Tommi Heikkinen1, Jorge Goncalves1, Vassilis Kostakos1, Ivan Elhart2, Timo Ojala1

1
Department of Computer Science and Engineering

University of Oulu, Finland

{firstname.lastname}@ee.oulu.fi

2
Faculty of Informatics

University of Lugano (USI), Lugano, Switzerland

{firstname.lastname}@usi.ch

ABSTRACT

We present the Tandem Browsing toolkit that allows developers

to build multi-display and multi-user applications for pervasive

displays with web technologies. Existing tools for this purpose

either focus on user needs, rather than developer needs, or do not

rely on open web standards. Our proxy-based toolkit allows

developers to conceptualize, design and implement interfaces that

orchestrate multiple devices in navigating through online content,

without any modifications to user devices. We first describe the

design and implementation of our toolkit, followed by a

qualitative validation with web developers. Then we illustrate the

functionality of the toolkit with three prototypes. We conclude

with a discussion on the toolkit’s characteristics and capabilities.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces - Graphical User Interfaces.

General Terms

Design, Languages, Management.

Keywords

Multibrowsing; distributed user interfaces; shared navigation.

1. INTRODUCTION
As increasing numbers of mobile and fixed displays populate our

environment, researchers have sought new ways for users to take

advantage of these devices. Pervasive displays are inherently

shared by their users and therefore can substantially benefit from

applications that support multiple displays at once. By enabling

multi-display applications, the diversity of devices and their form

factors can be fully exploited. In addition, the collaborative use of

applications can be substantially strengthened: while users use the

same applications using different devices, the applications can

support shared use by coordinating activities and synchronizing

content between the users.

The currently available multi-display tools empower users to take

control of their task and use multiple devices in a distributed user

interface fashion [11]. For instance a user may choose to use a

tablet pc to search for images and videos, but switch to the large

TV in the living room to actually display those. Similarly, groups

of users are able to better synchronize their activities by keeping

track of each other’s actions while executing a shared task.

The flexibility of the web, and the ease with which online content

can be accessed and shared, has made web technologies an

interesting approach for collaborative browsing involving multiple

devices. However, most existing approaches have an important

potential limitation: they focus on the user, not the developer.

Most tools are built as ad-hoc extensions that turn web browsing a

shared activity by simply synchronizing all the actions between

the participating browsers. The focus on users also has another

important consequence: it is hard for a developer to actually create

content, online applications, or orchestrate an online experience

taking advantage of multiple devices. We argue that the full

potential of multi-display applications can be achieved only if the

applications are designed from the ground up. For this to happen

developers require tools, which are currently scarce.

In this paper we present the Tandem Browsing toolkit, a proxy-

based toolkit for building multi-display applications and online

experiences. The toolkit allows developers to declaratively define

multipart web pages, i.e., pages that have multiple conceptual

parts viewed on multiple devices in tandem. The toolkit uses a

finite state machine metafile for building multipart pages and

establishing stateful application flow (navigation sequence). The

toolkit extends our previous work on the declarative layout

management of the screen real estate of interactive public displays

with web technologies [5, 12] by adding support for multi-display

and multi-session applications.

2. RELATED WORK
Various web based tools for multi-display applications have been

presented in literature. A popular approach has been to employ a

proxy for controlling a browsing session spanning multiple

devices. For example, Cabri et al. [2] presented a multi-device

system where a proxy informs all devices in the session about the

status and activities of other devices, and enables multiple users to

chat with each other while browsing. Taking this idea further,

Johanson et al. [7] described a multi-browsing framework that

empowers users to continue their browsing session across multiple

devices and synchronizing their activities via a tuplespace. For

instance a user can start browsing on her desktop and then

continue browsing on a tablet PC. In both frameworks clients

have to have a specific browser plugin, which is not the case in

our toolkit. Atterer et al. [1] went even as far as synchronizing

cursor, scrolling movements and keyboard inputs across multiple

devices with a web based system that does not require any

plugins. However, their system focuses on end-user needs, and as

such, does not provide support for designing applications

specifically for multi-display scenarios.

Maekawa et al. [13] proposed a more modular system for

collaborative browsing on mobile phones. Their system partitions

PerDis '14, June 03 - 04 2014, Copenhagen, Denmark
Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-2952-1/14/06…$15.00.

http://dx.doi.org/10.1145/2611009.2611026

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from
Permissions@acm.org.

PerDis '14, June 03 - 04 2014, Copenhagen, Denmark

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2952-1/14/06…$15.00.

http://dx.doi.org/10.1145/2611009.2611026

http://dx.doi.org/10.1145/2611009.2611026
http://dx.doi.org/10.1145/2611009.2611026

web pages by analyzing their elements and the capabilities of the

mobile clients. Users are allowed to define rules for each client

regarding browsing across multiple devices. This approach results

in the need for distributed rules configured by users on an ad-hoc

basis, thus increasing flexibility at the expense of user burden.

Some studies have considered ways to empower developers in

taking advantage of multiple devices in their applications. For

example, the WebSplitter [4] defined “partial views” for

designing content on multiple devices using specific XML pages.

This approach allows multiple devices to render different parts of

the same XML file based on decisions made upon design. Our

toolkit also uses XML for defining pages with multiple parts.

However, in our case the actual content is created using standard

web pages familiar to web developers. Coles et al. [3] described a

framework for coordinated web form filling that enables different

representations of pages across multiple clients. The framework

avoids the need for a stateful proxy by aggregating the page

request from clients with the help of a stateless consolidation

proxy. However, the framework requires a customized browser.

We also highlight that a number of web technologies are available

to build applications where the content is synchronized between

multiple clients. For instance, web sockets, Ajax and reverse

Ajax, and Java applets allow developers to build pages where two

or more clients can directly interact in real time. However, what

these technologies lack is a way for clients to be synchronized and

orchestrated in the way they move between pages.

In summary, developing multi-display applications with web

technologies has been an active research topic for many years, but

mostly for the benefit of end users. Most past work focuses on

empowering end users to collaborate browsing over existing

content and to find appropriate ways to utilize multiple devices for

improving browsing experience. Interestingly, the focus on web

developers has been rather limited so far − very few tools have

been built to empower developers to specifically design

applications for multi-display settings. This is the goal of our

tandem browsing toolkit.

3. TANDEM BROWSING
The objective of the Tandem Browsing Toolkit is to enable

developers to conceptualize, design, and implement applications

that simultaneously cater to multiple displays and/or users sharing

a single application session. The toolkit helps developers to

support tandem browsing from the ground up with standard web

technologies. When the flexibility of web technologies is

combined with multi-display interfaces, various use cases emerge.

For example, collaborative web applications [1, 2] have potential

to enrich conventional browsing by allowing multiple users to

take part simultaneously. Another potential use case for tandem

browsing is the design of distributed user interfaces for

information kiosks and pervasive displays [7, 8].

3.1 A Web Philosophy
The toolkit aims to be seamlessly integrated into the traditional

web development process. This means that toolkit is compatible

with all web development tools and techniques that developers are

familiar with. Subsequently, the developer has to consider at the

design phase how tandem browsing will be utilized, on which

parts of the application, with what content, and what device

requirements [8]. In practice, the developer simply needs to

develop applications taking into account that multiple devices

may be accessing the same content or parts of the content

simultaneously. Following web standards is crucial as for instance

requiring a browser plug-in at the client side would make it hard

to view the content on various platforms until the plugin would be

ubiquitously available for all browsers.

3.2 Device and User Specific Views
Similar to [3, 4], our toolkit targets that content should be

configurable per device type and/or user according to the

application requirements. Developers should have the option to

introduce separate parts and following our earlier work [5], we

refer to the individual parts as virtual screens as they disconnect

browser windows from actual web content. Thus, a designer can

divide an application interface into multiple virtual screens that

can be assigned for different devices and users flexibly. Hence,

the detailed design of a tandem browsing application is left to the

developer. We argue that this is a flexible approach enabling the

development of various types of web applications.

3.3 Orchestrating Navigation
Hyperlinks between individual web pages are a crucial feature of

web. In web, the links allow easy interlinking of information and

composing complex web applications from individual web pages.

On the contrary, pervasive displays benefit from more strict

control over what can be shown on the displays and therefore the

content should be based on applications rather than free web

browsing. For example, an application may require three pages in

a predetermined sequence: “welcome”, “main task” and

“goodbye”. Following our earlier work [5], in a tandem browsing

application this sequence is enabled with a finite state machine. It

has a starting page and describes possible transitions between

pages. The finite state machine helps in designing a multi-display

application as a whole. However, to facilitate flexible application

design, the state machines must be dynamically loadable in

runtime similarly to accessing a new web site.

3.4 Separating Responsibilities
The above abstractions effectively divide the user interface design

process into two parts: (1) designing the overall structure of the

application (i.e. the state machine) and the composition of each

multipart page as virtual screens, and (2) designing the actual

content for each virtual screen. Virtual screens are plain web

pages and thus can be easily moved, copied and replaced. Similar

to dynamic web pages, the content of individual virtual screens

can also change dynamically, which may require synchronization

with other virtual screens. The need for synchronization is

completely application specific and can vary from mirroring

everything (e.g., collaborative form filling), partial

synchronization (e.g., total price of individual baskets) to none

(e.g., non-dynamic pages). Due to the varying needs, the

synchronization is solved externally using a separate

communication middleware UbiBroker [6], but developers are

also free to use their own synchronization mechanism.

4. IMPLEMENTATION

4.1 Architecture
We have chosen a proxy-based architecture for our toolkit, similar

to [1, 2, 4]. However, in our case the proxy server handles only

the content synchronization and orchestrated navigation between

multiple devices. The actual contents of virtual screens are loaded

directly from respective web servers, outside the proxy server.

The proxy server is a Java web application running on a Tomcat

server and may optionally use a MySQL database for persistent

storage of session information if application state has to survive

over proxy server restarts.

Figure 1 shows initial steps of a tandem browsing sequence. As a

first step each browser makes a HTTP GET request to get a top

frame from the proxy server to establish a tandem browsing

session. This request contains a shared session id as well as

potentially client specific browser attribute. A session stays alive

as long as at least one of the participating clients is connected to

the proxy server. The top frames and the proxy server monitor

connection between them and if a connection is lost, they attempt

to recover it and finally invalidate it if the loss is permanent.

Figure 1. Proxy-based Tandem browsing architecture

In step 2 a state machine is set for the session by sending to the

proxy server a manageSession:setStateMachine event which

contains an URL to the state machine stored on a web server. In

step 3, the proxy fetches the state machine, parses it and runs it.

The initial state is a multipart page, which defines the placement

of virtual screens on the clients. In step 4 the proxy server

instructs the top frame on each client to fetch pages b1→URL1

and b2→URL2 respectively, based on the XML description of the

multipart page and browser attributes. This triggers step 5 in

which the clients send HTTP GET requests to the web servers to

fetch the content of the virtual screens directly outside the proxy.

At this stage, state changes within the current state machine as

well as new state machines can be triggered via the management

API, which renders the content on the clients accordingly.

4.2 State Machines and Multipart Pages
A state machine describes how clients can transition between the

various multipart pages of the application. An arbitrary number of

multipart pages can be linked together using the finite state

machine notation. State machines are suitable for describing

predictable applications with fine grained control over which

transitions are allowed in which states. The finite state machines

are defined using the State Chart XML (SCXML) language, a

W3C working draft (http://www.w3.org/TR/scxml/).

We have chosen to define multipart pages declaratively inside the

SCXML states in the extensible data model elements following a

particular XML schema. The structure of multipart pages is

minimal, i.e., inside a root element there can be one or more

virtual screen elements. The attributes of the virtual screen

elements are: id, resource, browser, width, height, xPosition,

yPosition, and zIndex. They define how the content of a virtual

screen is visualized with respect to the full screen real estate of a

particular client browser. The browser attribute is used in runtime

to allocate a virtual screen to the appropriate browser (see the

attributes b1 and b2 in Figure 1). The attributes width, height,

xPosition, and yPosition use a relative scale from 0…1 and define

the region allocated for the virtual screen. The zIndex attribute

defines the stack order of the virtual screens. The id attribute must

be unique within the multipart page. The resource attribute

defines the location of the content of the virtual screen as an URL.

4.3 Tandem Session Synchronization
Synchronization between clients is achieved through a

communication between the top frame on each client and the

proxy server. The clients sharing the same session id belong to the

same tandem session. Proxy server controls the content on clients

by manipulating their virtual screens, which are implemented as

iframe tags. The proxy server communicates with the top frames

with the Direct Web Remoting (DWR) library

(http://directwebremoting.org). It provides a seamless way to bind

server side Java code and client side JavaScript code using AJAX

and reverse AJAX. The DWR allows browser sessions to be

identified with a flexible attribute-value pair mechanism, which is

utilized in managing the tandem browsing session.

Interaction with the proxy server is required to trigger state

machine links or to load a new state machine. The management

API contains two events with corresponding functions:

 manageSession event can trigger two functions for managing

client sessions: setStateMachine sets the current state machine

(allows state machine sequencing); setParameter defines data

to the shared and individual browser sessions.

 changeState event re-directs the browsing session to a new state

in the state machine. The event is validated against the state

machine in runtime. If the state change is acceptable, the clients

involved in the session load a new multipart page.

First state machine for session can be also set as a URL parameter

in the request for top frame (step 1 in Figure 1). This allows direct

linking to state machines and also nesting state machines. The

toolkit supports two alternative implementations of management

API: XML over SOAP (for middleware components) and JSON

over DWR (for web applications). The interfaces are

interchangeable and have identical payload data format.

4.4 Overhead
Session initialization involves 12 requests that create 18 kB of

additional data transmitted. The management of an ongoing

session requires messaging between the top frames and the proxy

server. Linking between multipart pages is not direct, i.e., an

event needs to be first sent to the proxy server, which will then

instruct the top frames in the browsers to request the content of

the virtual screens accordingly. Any substantial communication

latencies between the clients and the proxy server have an

immediate deteriorating effect on the user experience which

restricts the placement of the proxy server relative to the clients.

Development overhead consists of two parts: (1) writing the state

machines as SCXML files and (2) setting up the proxy server.

Similar to other web resource files, developers can copy-paste and

modify readymade SCXML files. Also, there are graphical tools

for editing, e.g. Scxmlgui (https://code.google.com/p/scxmlgui/).

The installation of the proxy server requires an Apache Tomcat

server where the proxy server's WAR file is deployed. The proxy

server can optionally use persistent storage, in which case the

developer needs to deploy a MySQL database.

5. EVALUATION WITH DEVELOPERS
To assess how developers perceive the possibilities of the toolkit

and its API, we conducted a workshop with four developers. The

participants were researchers or students, and they all had

extensive background in web programming which qualified them

as potential users of our toolkit.

We first gave a presentation to all participants, discussing tandem

browsing in detail and also answered all questions that the

participants had about the toolkit’s operation. Following the

http://www.w3.org/TR/scxml/
http://directwebremoting.org/

presentation we had an open-ended group discussion where the

participants criticized, praised, and questioned the toolkit’s

purpose. Along the open-ended discussion we asked a number of

pre-defined questions regarding the details about the developer

API and implementation. Next, we held a brainstorming session

where participants came up with ideas about how to use the

toolkit for novel applications.

5.1 Feedback on the Programming Model
In general, a lot of the discussion focused on the separation of the

tasks supported by the toolkit and the tasks supported by

applications. No participants felt that the toolkit was responsible

for too much. Rather, some participants considered that more

support from the toolkit could be beneficial, e.g., mechanism for

discovering and joining existing tandem browsing sessions.

All participants praised the fact that they can use standard web

technologies to implement virtual screens. The web approach was

noted as strength as it allows platform independency and seemed a

logical choice for implementing multi-display applications. They

also considered the rapid prototyping aspect of the web as an

advantage, so that pages can be built quickly by copying parts

from existing pages.

The programming model of synchronizing navigation between

multiple devices was well received. Participants considered it to

be most suitable for stateful applications that have multiple clearly

distinct “stages”. For applications having only a single stage the

benefits of the toolkit remained unclear as the toolkit wouldn’t

synchronize the sessions beyond the point all clients are on the

same multipart page. Further, the need for the definition of state

machines in every situation was questioned, especially in cases

where there is only a single state with one virtual screen, which is

shown on each of the client devices. In such case the state

machine would be just a wrapper for a single page.

5.2 Brainstorming for Scenarios
The brainstorming session was substantially affected by the

participants’ prior experience of collaborative websites. For

instance, first the participants attempted to draw analogies with

familiar concepts such as Google Docs. Then brainstorming

focused on a single user using multiple devices and a number of

scenarios were identified such as the second screen concept for

home. Next the participants focused on scenarios with separate

“private” and “public” views across various devices. Finally,

brainstorming concluded with multi-user multi-display scenarios,

such as a teacher in a classroom and collaborative form-filling.

6. Prototypes
To demonstrate the toolkit’s capabilities, the authors implemented

functional prototypes of three scenarios identified in the

brainstorming session: tandem authentication, tandem seat

booking and tandem couples shopping..

6.1 Tandem Authentication
This prototype implements a typical distributed user interface

scenario with a situated public display and a mobile phone, as

described for example in [11]. In this single-user scenario, the

display shows public content and the mobile phone is used to

input sensitive information such as passwords.

Figure 2a shows the application flow distributed between the

public display and the mobile phone. At the Login multipart page,

the fixed display is locked and shows a QR-code containing a

URL to join the tandem browsing session. This URL can be

opened with a mobile phone having camera and QR-code reader.

The URL contains a session id -attribute of the fixed display and a

browser-attribute with value ‘phone’, which matches the phone

specific virtual screen on the Login multipart page. Thus by

opening the URL the mobile phone joins the session and gets its

specific part of the multipart page. Successful authentication

transitions both the mobile phone and the fixed display to a

Loggedin multipart page. This multipart page also has different

content for the two devices.

6.2 Tandem Seat Booking
This prototype demonstrates a scenario where two users are

simultaneously editing shared data. Suppose Mary and Ben want

to see a movie together and have to select seats during the

booking process. Instead of the other of them making the booking

online and communicating with the other via phone, this

application allows them to make the reservation collaboratively.

The application flow of the Tandem Seat Booking is shown in

Figure 2b. Now, the Seat booking multipart page has just a single

virtual screen, which shows available seats. Mary and Ben can

choose available seats co-operatively by clicking. The

synchronization of dynamic content of individual pages is done

via the UbiBroker [6]. When Mary and Ben have agreed on the

seats, either of them can click the Checkout button. This causes a

changeState event to be triggered on the proxy server. The

Checkout page contains again only a single virtual screen, which

summaries the reservation and outputs the price that are passed

using URL parameters.

(a) (b) (c)

Figure 2. Prototype applications: (a) Tandem authentication; (b) Tandem seat booking; (c) Tandem couples shopping

Seat booking multipart page

Checkout multipart page

ch
an

geState

Application
synchronizes

content

[]
[]

[][]

Login multipart page

Loggedin multipart page

Join session

ch
an

geState

Data passed as
URL-parameter

[display]

[display]

[phone]

[phone]

Shopping multipart page

Checkout multipart page

ch
an

geState
ch

an
geState

Set browser-
attribute

Gender selection multipart page

Visualization for
session information

[]
[]

[][]

[male] [female]

ch
an

ge
St

at
e

6.3 Tandem Couples Shopping
This prototype demonstrates a scenario where two users have

distinct virtual screens in the application. Imagine Helen and John

wanting to shop online together but collecting their personal

shopping carts. In traditional web applications they would each

have isolated sessions with separate carts. With the Tandem

Couples Shopping web application, Helen and John can both

simultaneously fill in their individual carts, but at the same time

the carts are summed up for a single joint check-out and payment.

Figure 2c shows the application flow of the Tandem Couples

Shopping. At the Gender selection multipart page Helen and John

are both asked to indicate which types of clothes they are

interested in (female or male). Their selections are stored in a

browser-attribute. This is also used as session information by

visualizing a person with a corresponding gender at the bottom

left corner of the page. This allows Helen and John to see when

the other has made his or her choice. Also, this information can be

used to monitor, who are actually participating in the tandem

browsing session. When changing onto the Shopping multipart

page, based on the gender the proxy server returns a different

virtual screen, men’s catalog for John and women’s catalog for

Helen. As the couple now keeps on adding items to their

respective carts, the application synchronizes the total sum of the

items between the virtual screens. Again, the dynamic content of

different virtual screens is synchronized using the UbiBroker [6].

The Checkout multipart page is similar to that of the Tandem Seat

Booking prototype, but in this case there is an additional “back”

button to return to the previous multipart page, i.e. Shopping.

7. DISCUSSION

7.1 Web Based Multi-Display Applications
Our toolkit is aimed at developers and relies on web-based

technologies. We argue that these characteristics make our toolkit

ideal for developing novel applications for multi-display and/or

multi-user scenarios, thanks to the availability of web

technologies on most device platforms today. One benefit of web

applications is that they avoid the obstacle of installing custom

client software on user devices, something that can be

challenging, especially in ad-hoc situations. Another benefit is

that developers are relieved from the burden of actually delivering

the application and making it compatible with a variety of

platforms. In this sense, it is crucial that our toolkit does not

require any browser plug-ins. Web also simplifies content

creation. Web provides a shallow learning curve so that

developers gradually take up new and more advanced

technologies. This is supported by the fact that working solutions

can easily be replicated and adapted by developers. Most

resources of web applications are publicly available, and therefore

developers can easily benefit from each other’s work.

7.2 Separating of Developer Responsibilities
We left out the synchronization of dynamic content of

applications between the different parts of a multipart page from

our toolkit’s core functionalities. We argue that having this

functionality in the toolkit is practical only for special cases, i.e.,

collaborative web browsing, in which case one of the following

tools [1, 2, 3, 7] could be used. However, to give the developers a

power to design applications for multi-displays that can exploit

the individual screens in a flexible way to implement any use

case, we argue it is better to provide the synchronization

mechanism as a separate service. It is crucial that the application

developers can employ their preferred mechanisms that suits best

for their use case. We think this is in line with the web philosophy

where developers can choose preferred technology for a specific

problem in hand and are not restricted to solutions dictated by a

particular framework.

Session establishment is another important issue in the division of

responsibilities between the toolkit and an application. We have

delegated session establishment to applications. The current

implementation requires the toolkit to have a unique session id for

a group of clients belonging to the same session. The value of

session id can be set freely and it is just a label for forking

sessions in the broker. Effectively, the developer has means to

define how sessions are created either in design time or

dynamically in runtime. For certain cases, it is possible to define

sessions statically and direct client browser into a correct session

with a predefined session id. For instance, if a service is bound to

a given physical location and the users use the service in an

ordered manner. The Tandem Authentication prototype uses this

mechanism as there is only a single session instance running on a

specific physical location and therefore the session id can be

location specific. The two other prototypes, Tandem Seat Booking

and Tandem Couples Shopping, exemplify another style of

handling sessions. Here applications connect to the proxy

spontaneously, i.e., they create a new session upon launch. Here it

is expected that the clients have some mechanism to agree on a

shared session id. This could be a separated meeting room page to

which the users connect first and then it re-directs the paired

clients to the application. Alternatively, the users could agree on

the used session id in advance, if the users plan the activity ahead.

A state change will be forced by the proxy server on all clients

involved in a particular tandem browsing session. In other words,

all clients will move to the target multipart page and its associated

virtual screens. Consequently, a user can be surprisingly dragged

to a new page due to another user deciding to move on to the next

stage in a stateful application. This behavior, however, is

completely application specific, so that the decision on which

client(s) can initiate a state change needs to be made by the

application. For example, an application can implement a specific

decision making logic, which requires a certain input from all

users before a state change link is activated. Another possibility is

to assume that clients have other means for communication, as

was the case with the Tandem Seat Booking prototype. There, the

actual decision could be made for example vocally and then one

user just clicks the link. The Tandem Authentication presented a

third way, where the developer defines that one virtual screen is a

master with a link that can be clicked. This logic works on

scenarios where there is only one user. It could also be used in a

coordinator-observer pattern, where one user is for example a

teacher controlling a presentation that students follow.

7.3 Security
Security is challenging in ubiquitous environments supporting

spontaneous interactions, where mobile devices join and leave ad-

hoc interactions with each other [10]. In the current

implementation of our toolkit, a client can join any session after it

acquires the corresponding session id. This may be a wanted

behavior in some situations, as in our Tandem Authentication

scenario. There, some level of security is enforced by the fact that

the user has to physically be in front of the display to access the

QR code, as proposed in [9]. However, in some other scenarios

leaking session ids can present a security risk. Therefore, it is

important to provide adequate feedback to users, for instance in

form of notifications when a new client joins a tandem browsing

session. For example, in the Tandem Couples Shopping prototype

such information is given to users by showing a person figure

(man or woman) in the bottom left corner of the screen. A third

such figure appearing would inform the couple that they no longer

have the session just for themselves. Therefore, displaying even

minimal session information may improve security.

Generally speaking, establishing a shared secret session id is

analogous to establishing a shared secret key for subsequent

authentication in private key cryptography. There, the parties

typically either agree on a key using the Diffie-Hellman key

exchange protocol or obtain a key from a trusted KDC (Key

Distribution Center). The Tandem Browsing proxy server could

also serve as a KDC for its clients.

7.4 Scalability and Fault Tolerance
Our proxy-based architecture is stateful as it manages the state

information of the clients. This in turn requires timely

communication between the proxy and the clients. Consequently,

the scalability of the architecture is limited in terms of geographic

scale and the proxy is a potential single point of failure. The

placement of the clients, the proxy server and the applications far

apart from each other may lead to long delays in synchronization

which in turn may result in poor user experience. The scalability

over number of clients of the proxy depends on the

communication and computing capacity of the server.

These scalability issues can be addressed by replicating the proxy

server across sites, thus offering a local and more accessible

instance. Ideally, the proxy server should be placed relatively

close to the clients as most communication is needed for

synchronization between client browsers. As we have described,

fetching the actual content of the virtual screens is done outside

the proxy server and thus is not affected by the placement and

capacity of the proxy server. This reduces the load on our proxy.

Nevertheless, we do not expect a single proxy server instance to

scale well on a general web browsing setting where thousands of

clients are accessing particular resources simultaneously.

If a proxy server becomes unavailable, its clients cannot make

new requests via the management API. The toolkit uses following

mechanisms to increase fault tolerance. The proxy server has been

organized in a way that reloading a top frame will recover the last

state of the session. In combination with persistent storage, the

sessions can be recovered even after a possible proxy server crash.

The call for recovery is made by the top frame in case it notices

that a connection to proxy server is lost. This brings the clients to

the last visited multipart page, but recovering the virtual screen

internal dynamic states is up to the applications themselves.

8. CONCLUSION AND ONGOING WORK
In this paper we presented the tandem browsing toolkit. The

toolkit gives developers creative freedom to build online

applications that orchestrate and manage multiple devices and

users in browsing online content. We demonstrated the

capabilities of the toolkit with three functional prototypes, all

implemented with open web technologies and without any

modifications to user devices. We argue that the web philosophy

of the toolkit makes it an attractive option for ubiquitous

environments where the ad-hoc nature of interactions suggests

that relying on custom software can be challenging.

In our ongoing work we are focusing on two main challenges: the

robustness and scalability of the proposed tandem browsing

architecture, and more advanced management of tandem browsing

sessions. The robustness and scalability of the architecture is

being put into test by a number of developers developing tandem

browsing applications for our network of interactive public

displays deployed at pivotal locations around Oulu [14].

9. AVAILABLE AS OPEN SOURCE
An open source implementation of the Tandem Browsing toolkit,

demo videos of the prototypes, and the instructions for using our

public Tandem Browsing proxy server for creating tandem

browsing apps are available at http://www.tandembrowsing.org.

10. ACKNOWLEDGMENTS
Authors would like to thank the Finnish Funding Agency for

Technology and Innovation, the ERDF, the City of Oulu, the

Academy of Finland and the UBI consortium for their support.

11. REFERENCES
[1] Atterer, R., Schmidt, A. and Wnuk, M. 2007. A Proxy-Based

Infrastructure for Web Application Sharing and Remote

Collaboration on Web Pages. In Proc. Interact’07, 74-87.

[2] Cabri, G., Leonardi, L. and Zambonelli, F. 1999. Supporting

Cooperative WWW Browsing: a Proxy-based Approach. In

Proc. Euromicro Workshop on PDP, 138-145.

[3] Coles, A., Deliot, E., Melamed, T. and Lansard, K. 2003. A

Framework for Coordinated Multi-Modal Browsing with

Multiple Clients. In Proc. WWW’03, 718-726.

[4] Han, R., Perret, V., Naghshineh, M. 2000. WebSplitter: a

unified XML framework for multi-device collaborative Web

browsing. In Proc. CSCW’00, 221-230.

[5] Heikkinen, T., Lindén, T., Jurmu, M., Kukka, H. and Ojala,

T. 2011. Declarative XML-based Layout State Encoding for

Managing Screen Real Estate of Interactive Public Displays.

In Proc. MUCS’11, 82-87.

[6] Heikkinen, T., Luojus, P. and Ojala, T. 2014. UbiBroker:

Event-based Communication Architecture for Pervasive

Display Networks. In Proc. PD-Apps’14, to appear.

[7] Johanson, B., Ponnekanti, S., Sengupta, C. and Fox, A. 2001.

Multibrowsing: Moving Web Content across Multiple

Displays. In Proc. UbiComp’01, 346-353.

[8] Kaviani, N., Lea, R., Fels, S. and Finke, M. 2012.

Investigating a Design Space for Multidevice

Environments. International Journal of Human-Computer

Interaction. 28, 11 (2012), 722-729.

[9] Kindberg, T., Bevan, C., O'Neill, E., Mitchell, J., Grimmett,

J. and Woodgate, D. 2009. Authenticating ubiquitous

services: a study of wireless hotspot access. In Proc.

UbiComp’09, 115-124.

[10] Kindberg T. and Zhang K. 2003. Secure Spontaneous Device

Association. In Proc. UbiComp’03, 124-131.

[11] Larsson, A. and Berglund, E. 2004. Programming Ubiquitous

Software Applications: Requirements for Distributed User

Interface. In Proc. SEKE’04, 246-251.

[12] Lindén, T., Heikkinen, T., Ojala, T., Kukka, H. and Jurmu,

M. 2010. Web-based framework for spatiotemporal screen

real estate management of interactive public displays. In

Proc. WWW’10, 1277-1280.

[13] Maekawa, T., Hara, T., Nishio, S. 2006. A Collaborative

Web Browsing System for Multiple Mobile Users. In Proc.

PerCom’06, 22-35.

[14] Ojala, T., Kostakos, V., Kukka, H., Heikkinen, T., Lindén,

T., Jurmu, M., Hosio, S., Kruger, F. and Zanni, D. 2012.

Multipurpose interactive public displays in the wild: Three

years later. Computer. 45, 5 (May 2012), 42-49.

