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Abstract—This paper presents an event-based communication 

middleware developed for a fairly large pervasive display 

network installed in a city center. We demonstrate the feasibility 

of the middleware with a set of dynamic and distributed 

prototype applications implemented for the display network. We 

also conduct an empirical performance evaluation of the 

middleware in lab and real world settings. 

Keywords—communication middleware; messaging system; 

publish-subscribe; public displays 

I. INTRODUCTION 

In this paper we report the current status of our work-in-
progress of developing a new communication middleware for a 
fairly large-scale real world network of multipurpose pervasive 
displays, so-called UBI-hotspots (Fig. 1), deployed at pivotal 
outdoor and indoor locations around Oulu, Finland [1]. The 
first complete release of our display middleware [2] used 
Fuego [3], an open source publish-subscribe messaging 
middleware supporting content-based routing of events. 
However, due to limited client support and stability issues 
Fuego failed to attract sustained trust and use among 
application developers and eventually became obsolete. This is 
typical to many experimental software projects that eventually 
fail to live up to the standards required by a long lasting real 
world deployment. 

Upon giving up on Fuego, we have re-designed the 
communication middleware with today’s software standards, 
yielding the proposed UbiBroker event-based communication 
architecture. The key requirements for UbiBroker included 
support for distributed and ad hoc application structures, 
stability, interoperability with a wide range of client platforms, 
and simplicity to reduce the burden of application developers. 
These requirements stem from our long-term experience in 
developing and maintaining a middleware software layer for 
display applications that are developed by many third party 
application developers, both academic and industrial, and that 
have to provide the high availability required by the 24/7 
deployment in a city center. 

This paper is structured so that we first briefly recap 
previously proposed communication middleware for pervasive 
computing systems in Section II. Section III presents the design 
and requirements underlying the proposed UbiBroker 
architecture. Section IV describes the implementation of the 
UbiBroker architecture. Section V briefly introduces several 

prototypes implemented atop UbiBroker and subsequently 
deployed on our display network. Section VI reports the 
empirical performance evaluations of the broker in a lab and in 
our display network, and briefly summarizes the experiences of 
the six month long real world deployment so far. Section VIII 
concludes the paper with a discussion. 

 

 

Fig. 1. A double-sided outdoor UBI-hotspot at the Oulu market place. 

II. RELATED WORK 

Various communication middleware have been presented 
for pervasive computing systems in the literature. Gaia [4] was 
one of the early attempts to design a complete top down 
middleware for ubicomp applications. The communication 
model in Gaia is based on CORBA’s event service which 
provides interoperability between clients implemented in 
different programming languages. The suppliers and consumers 
are decoupled by using specific channels similar to the publish-
subscribe pattern. Equip [5] application framework is also 
based on CORBA. Equip is a distributed interactive 
middleware system to bridge physical world and mixed reality. 
The communication system dubbed Data Service is based on 
the publish-subscribe messaging model implemented with a 
tuple space and loosely coupled template matching. 

The Interactive Workspace project [6] developed a 
communication middleware in the context of an interactive 



room. The communication is based on a centralized tuple space 
dubbed EventHeap which in turn is based on IBM TSpaces. 
The middleware supports multiple programming environments 
including Java, C++ and web. Routing of events is based on 
template matching. As the project was limited to an interactive 
room, the scalability of the proposed communication 
middleware for larger deployments remained unclear. 

The One.world project [7] presented software architecture 
for pervasive computing systems that embraced contextual 
change, encouraged ad hoc composition and recognized sharing 
as default. The communication middleware includes a Java 
based tuple space and asynchronous event service. Data is 
represented as tuples in generic self-describing named and 
optionally typed fields and all communication is implemented 
using asynchronous events. One.world supports only Java 
clients. 

GREEN [8] is a highly configurable and re-configurable 
publish-subscribe middleware for pervasive computing 
applications. GREEN middleware supports pluggable 
interaction types that are topic-based, content-based and 
context (proximity) and also pluggable event brokers to 
embrace different network types and devices. Similar approach 
was adopted by MundoCore [9] which was designed for an 
environment with high degree of heterogeneous networks and 
platforms. The kernel implementation of MundoCore is 
available in C++, Java and Python and can be installed onto 
most common operating systems including mobile. The low 
level communication pattern is based on topic-based publish-
subscribe, but similarly to GREEN, MundoCore also offers 
other interaction patterns.  

MAGIC Broker [10] is a communication middleware 
specifically designed for interactive public displays including 
mobile device interactions. The MAGIC Broker middleware 
uses a set of common abstractions: channels, events, state, 
services, and content.  The channels describe entities existing in 
the environment and support hierarchical structure. The events 
and state information are routed based on channels, i.e., the 
channel is similar to topic in a publish-subscribe pattern. The 
publish-subscribe protocol in MAGIC Broker is implemented 
using the REST architectural style, i.e., the services 
communicate with MAGIC Broker using the HTTP protocol. 

The above middleware share the common objective of 
supporting ad hoc and distributed application structures by 
decoupling communicating processes with event based 
messaging enabled by a message broker. Further, they tend to 
combine the communication functionality with the component 
model into a coherent application development framework. 
Finally, they are based on an outdated and/or a proprietary 
protocol, which has resulted in the lack of widespread 
adoption. 

 While UbiBroker also uses events, it is different from the 
above middleware in the sense that it treats communication as 
an independent functionality. In other words, UbiBroker does 
not specify how applications should be constructed to be 
supported by it. This separation of concerns places fewer 
constraints on the selection of programming languages and 
platforms, and reduces the complexity of application 
development by making the use of a particular framework 

optional. UbiBroker is based on a proven and widely used 
general purpose open source publish-subscribe messaging 
software that has active developer support. This way, 
UbiBroker inherits its stability and scalability, which are 
required by a large-scale long-term real world deployment. 

III. DESIGN 

A. Background 

The motivation for this work stems from our many years of 
experience of operating and managing the Open UBI Oulu 
urban computing testbed in Oulu, Finland [12]. The objective 
of the testbed is to facilitate longitudinal large-scale studies of 
future ubiquitous computing systems in authentic urban setting 
with real users. The testbed comprises of diverse ‘fixed’ 
computing resources such as large WiFi and Bluetooth 
networks and different types of public displays. These 
heterogeneous computing resources constitute a large 
distributed system which is organized with a middleware layer. 
It provides various resources for supporting technology 
experiments, open APIs for application developers, and tools 
for managing the testbed and the end-user applications 
deployed atop the testbed. So far the testbed has been exploited 
by over 30 academic research groups in nine different countries 
and a number of businesses. 

The UBI-hotspots are the most visible part of the testbed. 
We deployed first hotspots in May 2009 and have now in total 
18 hotspots in 12 indoor and six outdoor locations. A hotspot is 
effectively a large LCD panel equipped with other computing 
resources such as a capacitive touch-screen foil, a control PC 
with a large hard disk, two overhead cameras, a NFC/RFID 
reader and a Bluetooth access point. The software architecture 
is designed to allow each hotspot to function individually based 
on its proximity context. At the same time the hotspots are also 
networked in a loosely-coupled fashion via an event-based 
communication overlay, which allows the hotspots to publish 
and subscribe to events related to their context. This design 
allows application distribution on multiple levels, from reliance 
on one hotspot to the utilization of multiple hotspots 
simultaneously and to coupling with user devices. 

The user interface of the hotspots is implemented using the 
Web paradigm. It comprises a set of webpages rendered by 
corresponding webserver processes and managed by our in-
house screen real estate management system [13, 14]. A 
hotspot is in either passive broadcast or interactive mode. In 
passive broadcast mode, the whole screen is dedicated to the 
UBI-channel, a customizable playlist of video, animation, and 
still photographs. When a face is detected from the video feeds 
of the overhead cameras or someone touches the touch-screen 
foil, the hotspot changes to interactive mode, where the screen 
is split between the UBI-channel and a customizable UBI-
portal. The UBI-portal contains a varying number of services, 
typically 25-30, in distinct service categories. Over half of the 
services typically depend upon third party content that is 
beyond our administrative control. This kind of distributed 
service provisioning is a must for a cost-efficient and 
sustainable realization of our multipurpose displays, and the 
web paradigm has proven very efficient in implementing it. We 
can quickly include new services residing on any webserver in 



the Internet, as long as they conform to certain minimal design 
guidelines. 

B. Requirements 

1) Decoupling of communicating processes 
A pervasive display network and related computing nodes 

such as user devices constitute a highly dynamic computing 
environment that has to support ad hoc composition of 
distributed applications triggered by user input and context 
events. This calls for referential decoupling of communicating 
processes to avoid hard-coupled interfaces which make it 
difficult to replace and move software components. If 
processes are executing simultaneously, a temporally coupled 
meeting-oriented communication model can be used. If also 
temporal decoupling is desired, then a generative 
communication model can be considered [14]. Therefore, 
similar to [4, 5, 6, 7, 8, 9, 10], we base our communication 
model on events. To facilitate one-to-many event-based 
communication based on patterns, we choose a topic based 
publish-subscribe as the preferred messaging paradigm similar 
to [4, 8, 9, 10]. However, in some cases processes may also 
need to be referentially coupled with point-to-point or RPC 
messaging paradigms. Therefore, the communication 
middleware should also support multiple messaging patterns [8, 
9].  

2) Stability  
The middleware has to provide high availability, i.e., the 

down times must be rare and the system needs to quickly 
recover from crashes. It is challenging to achieve stability if 
communication middleware is built from scratch, as reliability 
tends to come over time after careful testing and sustained 
development support. Therefore, we prefer proven existing 
communication middleware solutions, which are preferably 
open source and supported by active developer community.  

3) Interoperability 
Developers require interoperability with various operating 

systems, communication protocols and programming 
languages. The middleware need to be installable on multiple 
platforms in order to be compliant with various computing 
environments and deployments. The communication 
middleware has to enable communication between different 
clients, which can be achieved by using standardized protocols 
and preferably also support integration into most common 
communication protocols used in a particular application 
domain. Often the protocol diversity is solved by using 
adapters. However, it is important that readymade 
implementations of the adapters exist as implementing a new 
adapter from scratch can be a tedious task. Developers also 
have different programming backgrounds and applications may 
require different technologies. Therefore, it is important to have 
a wide range of supported programming languages for 
implementing clients. Web provides best interoperability over 
different operating systems and is the only common application 
deployment platform. Therefore, web compliance is an 
essential feature for the communication middleware. 

4) Simplicity 
While the developers of middleware components can be 

expected to tolerate complexity to some extent, the developers 

of third party applications atop the middleware want simplicity. 
In our experience they have varying backgrounds and levels of 
expertise. Simplicity can be achieved by a well-defined 
lightweight application programming interface, readymade 
templates, code examples and detailed documentation. The use 
of the communication middleware should also be optional, i.e., 
the application developers should not be forced to use it if they 
do not need it. This is consistent with the web philosophy, 
where developers have great freedom over technologies they 
use. 

C. Conceptual communication architecture 

The conceptual communication architecture of our display 
network is shown in Fig. 2. The main component is a 
centralized message broker that takes care of passing messages 
between processes that we refer to as clients with respect to the 
broker. The clients loosely belong to three categories. Context 
sources publish context events originating from an external 
input device such as a camera or an NFC/RFID reader or from 
user actions. Applications interact with the users and they can 
consist of multiple components executed by different 
processes. Middleware services provide various functionalities 
and resources to applications. 

 

  

Fig. 2. The conceptual UbiBroker communication architecture. 

The clients are executed on different computing platforms, 
which we divide into three categories. Situated public displays 
are fixed and typically have high bandwidth network 
connection and capable hardware. These fixed resources serve 
people with applications and are managed by the middleware. 
Depending on their capabilities, they may also be able to 
capture and produce context events. The second resource 
category is mobile devices that rely on wireless connectivity 
and have heterogeneous software platforms. Due to their 
intermittent connectivity and ad hoc usage patterns, they often 
establish distributed ad hoc interfaces with other resource 
types. The third category is server resources that host 
application processes and general purpose middleware services. 

IV. IMPLEMENTATION 

We describe the implementation of the UbiBroker 
architecture using the distributed systems taxonomy of 
Tanenbaum and Steen [14]. After comparing a number of 



different message brokers, we chose RabbitMQ [15] for the 
UbiBroker architecture. RabbitMQ is an open source project 
with an active developer community and available for a wide 
range of operating systems and programming languages. 

A. Architecture and Processes 

Fig. 3 illustrates the client-server architecture of RabbitMQ. 
There are two types of processes, the RabbitMQ server process 
and client processes. A client process can act both as a 
publisher (producer) and a subscriber (consumer) of events 
simultaneously. RabbitMQ divides resources into multiple 
administration domains called virtual hosts. The server 
implementation is available for Windows, Linux/Unix, Mac OS 
X and EC2 platforms. Official client implementations are 
available in Java, .NET/C# and Erlang that are supported by a 
wide range of platforms. Community contributed client 
implementations are available for many other programming 
languages, e.g. Ruby, Python, PHP, Perl, and C/C++.  

 

 

Fig. 3. The C/S architecture of RabbitMQ. 

B. Communication 

The clients communicate with the broker using TCP as the 
transport protocol. The core messaging protocol is the 
Advanced Message Queuing Protocol (AMQP). Clients can 
have multiple connections to the broker, i.e., channels, which 
are multiplexed into a single TCP connection to avoid having 
multiple TCP connections. Clients publish event messages to 
an exchange, where routing decisions are made depending on 
the binding information (i.e. the routing_key) stored in the 
exchange. Binding is a rule that defines the relationship 
between an exchange and a queue informing the exchange in 
which messages the queue is interested in. Exchanges support 
multiple routing patterns using one of the four alternative 
exchange types:  

• direct exchange for unicast (and multicast) routing,  

• fanout exchange for broadcast routing,  

• topic exchange for routing based on matching of dot 
separated words with wild cards, and 

• headers exchange for routing based on matching key value 
pairs. 

A message queue is a FIFO buffer maintained at the broker.  
A client can subscribe to multiple queues and a queue can be 
associated with multiple clients. Finally, subscribing clients can 
consume messages from queues either by using push or pull 
delivery modes. 

Non-AMQP clients connect to the broker using protocol-
specific adapters that transparently translate protocol-specific 
methods into their AMQP equivalents and back. Fig. 3 shows 
the Web-STOMP adapter that is a simple bridge exposing the 
STOMP protocol over emulated HTML5 WebSockets. The 
main purpose of the Web-STOMP adapter is to allow web 
clients to use the RabbitMQ broker. 

AMPQ treats message payload as a byte array and does not 
constrain its formatting. However, the utilization of a 
middleware benefits from a common structured data format. 
Therefore, in the UbiBroker architecture we use text-based 
JSON message format due to its lightweight nature, widespread 
adoption in web messaging, and support for parsers in many 
programming languages. 

C. Naming 

Clients need to know two categories of names. The first 
name is the URI pointing to the adapter on the RabbitMQ 
server, which includes the protocol, username, password, 
hostname, port and virtual host. The protocol and port vary 
between adapters. The second category is the routing_keys, i.e., 
the topics used to route event messages. These names are 
independent from the client protocol and are defined by the 
developers. Topics in AMQP are not strictly hierarchical. Each 
word in a topic is independent, i.e., each word could define an 
independent aspect that describes the topic. However, as the 
hierarchical structure is easier to comprehend, we prefer a 
format where broader categories are listed first and then come 
the more limiting sub-words defining a specific location or a 
session, for example.  

D. Synchronization 

AMQP provides optional transactions for channels to 
guarantee message delivery between publisher clients and the 
RabbitMQ broker. The queues handle and deliver the event 
messages in FIFO order to subscribing clients. Further 
synchronization needs to be done by the clients if for example 
correct ordering of causally related events on different queues 
needs to be guaranteed. 

E. Consistency and Replication 

The RabbitMQ server can be replicated to improve fault 
tolerance and/or scalability. Multiple RabbitMQ brokers can be 
assigned into a cluster. By default most of the internal 
components are replicated with full ACID (Atomicity, 
Consistency, Isolation, Durability) capabilities with the 
exception of the queues. The queues are located in the node 
where they are created which improves scalability and 
reliability. If high availability is required, then also the queues 
can be replicated, in which case the nodes could be structured 
as having one master and the others are mirrored slaves. 

F. Fault Tolerance 

Clients can decide upon the persistency of event messages. 
In the persistent mode the broker stores messages to permanent 
storage until they are delivered which protects against broker 
crashes and shutdowns. Message delivery from a client to the 
broker and from the broker to a client can be guaranteed by two 



mechanisms. First, a subscribing client can use AMQP 
acknowledgements to inform the broker that it has received or 
processed the message. The broker safely holds the messages in 
a client's queue until it receives an acknowledgment from the 
client, which guards against client crashes. Second, the 
publishing of messages can be guaranteed by channel confirms. 
Both mechanisms can be performed per message or per 
multiple messages simultaneously. 

G. Security 

RabbitMQ provides optional confidentiality of 
communication via the SSL encryption of channels. In terms of 
controlling access to the broker, clients need to authenticate 
themselves using username and password. RabbitMQ allows 
also access control per resource (virtual host, exchange and 
queue). In order to perform operations on a resource, users 
must have an appropriate permission granted for it. Only 
authorized clients can access resources thus restricting misuse 
between clients. 

V. PROTOTYPE IMPLEMENTATIONS 

We have developed atop RabbitMQ multiple prototypes of 
context producers, middleware services and applications that 
have been deployed on our display network. 

A. Context Producers 

The Context Producers collect and distribute context 
information for context aware applications and logging 
purposes. A particular type of context information is the 
numbers and demographic attributes (age, gender) of faces 
detected from the video feed of the overhead camera in a 
hotspot.   

B. Middleware Services 

1) Logger Service 
Logger Service listens to registered topics and stores the 

message data into a database for later analysis. The general 
purpose Logger Service is motivated by the fact that many of 
the event message payloads are already in the format suitable 
for system level logs. Logger Service utilizes JSON schemas 
and stores only valid messages into a database.  

2) Multi-Display Session Manager 
Multi-display Session Manager uses RabbitMQ to 

synchronize multiple hotspots into a shared and distributed 
multi-user application session. Each hotspot has its own state 
and context, which Session Manager monitors. If a multi-user 
application is to be launched, Session Manager interrupts local 
sessions and establishes a shared and distributed session across 
multiple hotspots. 

C. Applications 

1) Ubidoku  
Ubidoku is a multiplayer Sudoku, which is played on 

multiple hotspots simultaneously. Multi-Display Session 
Manager establishes a shared and distributed Ubidoku session 
on multiple hotspots. RabbitMQ is used to synchronize gaming 

events between the separate components of the distributed user 
interface. 

2) Map  
Map has also a distributed user interface that comprises of a 

hotspot and a mobile phone. The hotspot shows a large 
interactive map while the mobile phone has a simple interface 
for entering text strings to search for points of interest on the 
map. The search strings are sent via RabbitMQ. 

3) UbiLibrary 
UbiLibrary is a service tailored for and deployed at the 

hotspot placed at the Oulu City Library. UbiLibrary 
dynamically configures its interface according to the current 
interaction mode and the demographic information of detected 
faces: hidden in the passive mode (no-one is interacting with 
the hotspot nor within visual proximity), show context 
(demographic) filtered book recommendations in the subtle 
mode (face has been detected from the video feed of the 
overhead cameras) to entice the user to interact; and full user 
interface in the interactive mode (user is interacting with the 
hotspot).  

VI. PERFORMANCE EVALUATION 

A. Performance Evaluation 

We have evaluated the performance of RabbitMQ both in a 
lab and in a real world setting. The RabbitMQ server process 
was installed on a virtual machine running CentOS 6.4 with 
two 2.7 GHz CPU's, 4 GB RAM, 40 GB disk and 1 Gbps LAN. 
The AMQP was used as the messaging protocol with topic-
based routing. The performance was measured as the average 
message delivery rate per subscriber per second during a test 
lasting 10 minutes. 

1) Lab evaluation 
In the lab evaluation the publishers and subscribers resided 

in the same 1 Gbps Ethernet LAN with the broker. Subscribers 
were configured to acknowledge messages after every 50 
received messages. The first lab test assessed message 
throughput for different numbers of subscribers bound to a 
single topic and for different message payload sizes. Fig. 4 
summarizes the results. As expected, the fastest per-subscriber 
throughput was achieved with a single subscriber and adding 
subscribers decreases throughput. Different message payloads 
under 2^9 bytes did not have a significant effect on throughput. 
First noticeable drop in the message delivery rate can be seen 
between 2^10 and 2^11 byte payloads, where the total message 
size exceeds Ethernet's 1500-byte MTU and packets begin 
fragmenting. Second drop can be seen between payloads 2^12 
and 2^13 bytes, when the virtual machine’s host computer’s 
network interface controller started to limit packet flow to 
around 120 000 packets per second. RabbitMQ’s flow control 
restricts publishers from publishing events faster than they can 
be processed. 



 

0

2000

4000

6000

8000

10000

12000

14000

16000

2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17M
e

s
s
a

g
e

 d
e

li
v

e
ry

 r
a

te
 i

n
 m

s
g

/
s

Message payload in bytes

1 Subscriber 2 Subscribers 3 Subscribers

4 Subscribers 5 Subscribers 6 Subscribers

 

Fig 4. Throughput for different numbers of subscribers bound to a shared topic 
and different message payload sizes. 
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Fig. 5. Throughput for different numbers of subscribers with one shared topic 
and with separate individual topics. 

The second lab test assessed the effect of having multiple 
topics and subscribers involved in the routing process so that 
each client subscribed to a separate topic, i.e. each topic had 
only one subscriber listening to it at any given point of time. 
The message payload was set to 256 bytes. Fig. 5 shows the 
throughput as a function of the number of subscribers/topics, 
the first test providing the baseline for multiple subscribers 
subscribing to one shared topic.  

2) Real world evaluation 
In the real world evaluation the RabbitMQ clients were 

deployed on the actual hotspots in the city of Oulu. The 
hotspots have fiber connections with a nominal bandwidth of 
10 Mbps. The clients were installed on virtual machines 
running CentOS 5.6 with 2.53 GHz CPU, 512 MB RAM and 
30 GB disk. The resources of the virtual machines were also 
used by the middleware software of the hotspots and the 
hotspots served the users normally during the evaluation.  

In the first test each client published messages size of 175 
bytes into the same topic at a rate of 1000 msg/s whereas only 
one client subscribed to the topic to simulate the Logger 
Service situation. The highest recorded delivery rates without 
and with message persistence were 12976 msg/s and 6805 
msg/s, respectively.  

The second test simulated a future scenario of a 
significantly higher load where in total 333 producers and 340 
subscribers were scattered on six different hotspots. The 

producers of a particular hotspot published messages to the 
same exchange but on different topics. Each subscriber had its 
own queue and subscribed to a separate topic, thus, overall, the 
system had 60 different topics. The producers published 
messages in a steady rate of 5 msg/s and the subscribers auto-
acknowledged each message separately. The publishers were 
able to publish up to 1043 msg/s in total, which resulted in 
5513 msg/s delivered to subscribers in total. The clients were 
not able to produce the messages at the given rate due to the 
constrained resources of hotspot virtual machines. Also, the test 
needed to be cancelled prematurely due to overloading one of 
the network routers, which affected the whole network 
performance.  

B. Real World Deployment  

A single RabbitMQ server instance has been running 
continuously for six months serving the aforementioned 
context producers, middleware services and applications 
deployed across our network of 18 hotspots over a metropolitan 
area network. So far, there has not been a single availability 
issue due to the message broker being unstable. During the six 
month deployment we have had one incompatibility issue with 
the clients. The WebSocket implementation in the Web-
STOMP protocol adapter was not compatible with a new 
Chrome browser release. Chrome browser releases rigorously 
implement the latest version of the evolving WebSockets 
specification and thus invalidated the not so rigorous Web-
STOMP clients. We reported the bug to RabbitMQ developers, 
who have fixed it since then. While waiting for the Web-
STOMP plugin to be updated, we simply modified the 
processing of WebSocket headers in the STOMP library as a 
work around. 

VII. DISCUSSION 

A. Decoupling 

In related middleware the choice of the messaging pattern is 
divided between content based routing [5, 6, 7, 8] and topic 
based routing [4, 8, 9, 10]. AMQP also supports multiple 
messaging patterns, but not content based as such. The headers 
exchange comes close as it allows key value pairs to be added 
into message headers and using them for dynamic filtering of 
messages. However, message body is not processed upon. This 
is motivated by the fact that message bodies can contain large 
amounts of data and processing them to make routing decisions 
would decrease the overall performance of the messaging 
system. Therefore, the topic and headers exchanges of AMQP 
protocol provide a good compromise between the decoupling 
of clients and performance.  

B. Simplicity and interoperability 

Setting up messaging between clients using RabbitMQ is 
surprisingly simple. A client only has to include the adapter 
library and a couple lines of program code to start publishing 
and subscribing events. The development overhead is thus 
minimal and considerably smaller than in achieving similar 
functionality from scratch. Since the deployment of the 
UbiBroker architecture, we have utilized the communication 
middleware with web clients and Java components.  However, 



we foresee much more heterogeneous clients in the future, 
which will take up the full power of multiple client 
implementations available for RabbitMQ. The same thing 
applies to multi-protocol support, since a common toolkit for 
building pervasive display applications is not yet a reality. 

Among the application developers involved with 
developing applications for our hotspots, there have been also 
third parties with no previous experience of RabbitMQ and our 
hotspot middleware. We provided them with a short online 
documentation with simple code snippets as examples of using 
the UbiBroker. The documentation provided by RabbitMQ 
works as an additional source for developers wanting an in 
depth description of features and/or willing to use different 
features of RabbitMQ not defined by us. None of the third 
party developers needed our assistance in using UbiBroker, 
mainly due to the simplicity of the RabbitMQ client model and 
the vast documentation available from the RabbitMQ support 
community.   

C. Stability 

The RabbitMQ broker has proven to be very stable. This is 
crucial as it reduces maintenance and increases trust among 
developers. Without trust they easily resort to ad hoc solutions, 
which exists plenty in the web technologies. Ad hoc solutions 
can easily become isolated or incompatible with the rest of the 
system and difficult to maintain afterwards.  

D. Performance 

 Performance evaluations revealed hard upper limits for the 
message delivery capacity of the proposed architecture. 
Increasing the number of subscriber queues affects the overall 
performance more than increasing the number of subscribers in 
the system. Therefore, for optimum performance it is better to 
share queues, i.e., have similar topics for multiple clients when 
applicable. Also, using persistent messages decreases the 
performance which can be expected. In any case, based on 
these evaluations, even a single RabbitMQ message broker will 
be able to satisfy the performance needs of our hotspot network 
in the future. This conclusion is supported by the second part of 
the real world evaluation which revealed that the performance 
of the hotspots and the network were the limiting factor instead 
of the RabbitMQ broker.  

VIII. CONCLUSION 

We presented the UbiBroker, event-based communication 
architecture for a pervasive display network. The design 
requirements were elicited from our experiences of operating a 
real world display network for many years and from the third 
party developers developing applications for the display 
network. The UbiBroker architecture is based on the off-the-
self RabbitMQ open source message broker. We evaluated the 
stability and performance of the middleware in a lab setting and 
in a real world deployment. We have learned that any 
performance bottlenecks are more likely going to originate 
from the operating environment than from the broker itself, 
even with a single broker instance. 

In our ongoing work we are looking at implementing a 
seamless JSON based state storage service for automatic 

storage and easy retrieval of system state. This would allow 
any late joining clients to construct the system state without 
having to wait for events to arrive first [6]. Another interesting 
challenge is integrating media intensive data such as web cam 
streams to the middleware, whose raw data streams cannot be 
transmitted through the message broker for practical reasons. 
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