
UbiBroker: Event-based Communication Architecture

for Pervasive Display Networks

Tommi Heikkinen, Petri Luojus, Timo Ojala

MediaTeam Oulu, Department of Computer Science and Engineering, University of Oulu

Oulu, Finland

{firstname.lastname}@ee.oulu.fi

Abstract—This paper presents an event-based communication

middleware developed for a fairly large pervasive display

network installed in a city center. We demonstrate the feasibility

of the middleware with a set of dynamic and distributed

prototype applications implemented for the display network. We

also conduct an empirical performance evaluation of the

middleware in lab and real world settings.

Keywords—communication middleware; messaging system;

publish-subscribe; public displays

I. INTRODUCTION

In this paper we report the current status of our work-in-
progress of developing a new communication middleware for a
fairly large-scale real world network of multipurpose pervasive
displays, so-called UBI-hotspots (Fig. 1), deployed at pivotal
outdoor and indoor locations around Oulu, Finland [1]. The
first complete release of our display middleware [2] used
Fuego [3], an open source publish-subscribe messaging
middleware supporting content-based routing of events.
However, due to limited client support and stability issues
Fuego failed to attract sustained trust and use among
application developers and eventually became obsolete. This is
typical to many experimental software projects that eventually
fail to live up to the standards required by a long lasting real
world deployment.

Upon giving up on Fuego, we have re-designed the
communication middleware with today’s software standards,
yielding the proposed UbiBroker event-based communication
architecture. The key requirements for UbiBroker included
support for distributed and ad hoc application structures,
stability, interoperability with a wide range of client platforms,
and simplicity to reduce the burden of application developers.
These requirements stem from our long-term experience in
developing and maintaining a middleware software layer for
display applications that are developed by many third party
application developers, both academic and industrial, and that
have to provide the high availability required by the 24/7
deployment in a city center.

This paper is structured so that we first briefly recap
previously proposed communication middleware for pervasive
computing systems in Section II. Section III presents the design
and requirements underlying the proposed UbiBroker
architecture. Section IV describes the implementation of the
UbiBroker architecture. Section V briefly introduces several

prototypes implemented atop UbiBroker and subsequently
deployed on our display network. Section VI reports the
empirical performance evaluations of the broker in a lab and in
our display network, and briefly summarizes the experiences of
the six month long real world deployment so far. Section VIII
concludes the paper with a discussion.

Fig. 1. A double-sided outdoor UBI-hotspot at the Oulu market place.

II. RELATED WORK

Various communication middleware have been presented
for pervasive computing systems in the literature. Gaia [4] was
one of the early attempts to design a complete top down
middleware for ubicomp applications. The communication
model in Gaia is based on CORBA’s event service which
provides interoperability between clients implemented in
different programming languages. The suppliers and consumers
are decoupled by using specific channels similar to the publish-
subscribe pattern. Equip [5] application framework is also
based on CORBA. Equip is a distributed interactive
middleware system to bridge physical world and mixed reality.
The communication system dubbed Data Service is based on
the publish-subscribe messaging model implemented with a
tuple space and loosely coupled template matching.

The Interactive Workspace project [6] developed a
communication middleware in the context of an interactive

room. The communication is based on a centralized tuple space
dubbed EventHeap which in turn is based on IBM TSpaces.
The middleware supports multiple programming environments
including Java, C++ and web. Routing of events is based on
template matching. As the project was limited to an interactive
room, the scalability of the proposed communication
middleware for larger deployments remained unclear.

The One.world project [7] presented software architecture
for pervasive computing systems that embraced contextual
change, encouraged ad hoc composition and recognized sharing
as default. The communication middleware includes a Java
based tuple space and asynchronous event service. Data is
represented as tuples in generic self-describing named and
optionally typed fields and all communication is implemented
using asynchronous events. One.world supports only Java
clients.

GREEN [8] is a highly configurable and re-configurable
publish-subscribe middleware for pervasive computing
applications. GREEN middleware supports pluggable
interaction types that are topic-based, content-based and
context (proximity) and also pluggable event brokers to
embrace different network types and devices. Similar approach
was adopted by MundoCore [9] which was designed for an
environment with high degree of heterogeneous networks and
platforms. The kernel implementation of MundoCore is
available in C++, Java and Python and can be installed onto
most common operating systems including mobile. The low
level communication pattern is based on topic-based publish-
subscribe, but similarly to GREEN, MundoCore also offers
other interaction patterns.

MAGIC Broker [10] is a communication middleware
specifically designed for interactive public displays including
mobile device interactions. The MAGIC Broker middleware
uses a set of common abstractions: channels, events, state,
services, and content. The channels describe entities existing in
the environment and support hierarchical structure. The events
and state information are routed based on channels, i.e., the
channel is similar to topic in a publish-subscribe pattern. The
publish-subscribe protocol in MAGIC Broker is implemented
using the REST architectural style, i.e., the services
communicate with MAGIC Broker using the HTTP protocol.

The above middleware share the common objective of
supporting ad hoc and distributed application structures by
decoupling communicating processes with event based
messaging enabled by a message broker. Further, they tend to
combine the communication functionality with the component
model into a coherent application development framework.
Finally, they are based on an outdated and/or a proprietary
protocol, which has resulted in the lack of widespread
adoption.

 While UbiBroker also uses events, it is different from the
above middleware in the sense that it treats communication as
an independent functionality. In other words, UbiBroker does
not specify how applications should be constructed to be
supported by it. This separation of concerns places fewer
constraints on the selection of programming languages and
platforms, and reduces the complexity of application
development by making the use of a particular framework

optional. UbiBroker is based on a proven and widely used
general purpose open source publish-subscribe messaging
software that has active developer support. This way,
UbiBroker inherits its stability and scalability, which are
required by a large-scale long-term real world deployment.

III. DESIGN

A. Background

The motivation for this work stems from our many years of
experience of operating and managing the Open UBI Oulu
urban computing testbed in Oulu, Finland [12]. The objective
of the testbed is to facilitate longitudinal large-scale studies of
future ubiquitous computing systems in authentic urban setting
with real users. The testbed comprises of diverse ‘fixed’
computing resources such as large WiFi and Bluetooth
networks and different types of public displays. These
heterogeneous computing resources constitute a large
distributed system which is organized with a middleware layer.
It provides various resources for supporting technology
experiments, open APIs for application developers, and tools
for managing the testbed and the end-user applications
deployed atop the testbed. So far the testbed has been exploited
by over 30 academic research groups in nine different countries
and a number of businesses.

The UBI-hotspots are the most visible part of the testbed.
We deployed first hotspots in May 2009 and have now in total
18 hotspots in 12 indoor and six outdoor locations. A hotspot is
effectively a large LCD panel equipped with other computing
resources such as a capacitive touch-screen foil, a control PC
with a large hard disk, two overhead cameras, a NFC/RFID
reader and a Bluetooth access point. The software architecture
is designed to allow each hotspot to function individually based
on its proximity context. At the same time the hotspots are also
networked in a loosely-coupled fashion via an event-based
communication overlay, which allows the hotspots to publish
and subscribe to events related to their context. This design
allows application distribution on multiple levels, from reliance
on one hotspot to the utilization of multiple hotspots
simultaneously and to coupling with user devices.

The user interface of the hotspots is implemented using the
Web paradigm. It comprises a set of webpages rendered by
corresponding webserver processes and managed by our in-
house screen real estate management system [13, 14]. A
hotspot is in either passive broadcast or interactive mode. In
passive broadcast mode, the whole screen is dedicated to the
UBI-channel, a customizable playlist of video, animation, and
still photographs. When a face is detected from the video feeds
of the overhead cameras or someone touches the touch-screen
foil, the hotspot changes to interactive mode, where the screen
is split between the UBI-channel and a customizable UBI-
portal. The UBI-portal contains a varying number of services,
typically 25-30, in distinct service categories. Over half of the
services typically depend upon third party content that is
beyond our administrative control. This kind of distributed
service provisioning is a must for a cost-efficient and
sustainable realization of our multipurpose displays, and the
web paradigm has proven very efficient in implementing it. We
can quickly include new services residing on any webserver in

the Internet, as long as they conform to certain minimal design
guidelines.

B. Requirements

1) Decoupling of communicating processes
A pervasive display network and related computing nodes

such as user devices constitute a highly dynamic computing
environment that has to support ad hoc composition of
distributed applications triggered by user input and context
events. This calls for referential decoupling of communicating
processes to avoid hard-coupled interfaces which make it
difficult to replace and move software components. If
processes are executing simultaneously, a temporally coupled
meeting-oriented communication model can be used. If also
temporal decoupling is desired, then a generative
communication model can be considered [14]. Therefore,
similar to [4, 5, 6, 7, 8, 9, 10], we base our communication
model on events. To facilitate one-to-many event-based
communication based on patterns, we choose a topic based
publish-subscribe as the preferred messaging paradigm similar
to [4, 8, 9, 10]. However, in some cases processes may also
need to be referentially coupled with point-to-point or RPC
messaging paradigms. Therefore, the communication
middleware should also support multiple messaging patterns [8,
9].

2) Stability
The middleware has to provide high availability, i.e., the

down times must be rare and the system needs to quickly
recover from crashes. It is challenging to achieve stability if
communication middleware is built from scratch, as reliability
tends to come over time after careful testing and sustained
development support. Therefore, we prefer proven existing
communication middleware solutions, which are preferably
open source and supported by active developer community.

3) Interoperability
Developers require interoperability with various operating

systems, communication protocols and programming
languages. The middleware need to be installable on multiple
platforms in order to be compliant with various computing
environments and deployments. The communication
middleware has to enable communication between different
clients, which can be achieved by using standardized protocols
and preferably also support integration into most common
communication protocols used in a particular application
domain. Often the protocol diversity is solved by using
adapters. However, it is important that readymade
implementations of the adapters exist as implementing a new
adapter from scratch can be a tedious task. Developers also
have different programming backgrounds and applications may
require different technologies. Therefore, it is important to have
a wide range of supported programming languages for
implementing clients. Web provides best interoperability over
different operating systems and is the only common application
deployment platform. Therefore, web compliance is an
essential feature for the communication middleware.

4) Simplicity
While the developers of middleware components can be

expected to tolerate complexity to some extent, the developers

of third party applications atop the middleware want simplicity.
In our experience they have varying backgrounds and levels of
expertise. Simplicity can be achieved by a well-defined
lightweight application programming interface, readymade
templates, code examples and detailed documentation. The use
of the communication middleware should also be optional, i.e.,
the application developers should not be forced to use it if they
do not need it. This is consistent with the web philosophy,
where developers have great freedom over technologies they
use.

C. Conceptual communication architecture

The conceptual communication architecture of our display
network is shown in Fig. 2. The main component is a
centralized message broker that takes care of passing messages
between processes that we refer to as clients with respect to the
broker. The clients loosely belong to three categories. Context
sources publish context events originating from an external
input device such as a camera or an NFC/RFID reader or from
user actions. Applications interact with the users and they can
consist of multiple components executed by different
processes. Middleware services provide various functionalities
and resources to applications.

Fig. 2. The conceptual UbiBroker communication architecture.

The clients are executed on different computing platforms,
which we divide into three categories. Situated public displays
are fixed and typically have high bandwidth network
connection and capable hardware. These fixed resources serve
people with applications and are managed by the middleware.
Depending on their capabilities, they may also be able to
capture and produce context events. The second resource
category is mobile devices that rely on wireless connectivity
and have heterogeneous software platforms. Due to their
intermittent connectivity and ad hoc usage patterns, they often
establish distributed ad hoc interfaces with other resource
types. The third category is server resources that host
application processes and general purpose middleware services.

IV. IMPLEMENTATION

We describe the implementation of the UbiBroker
architecture using the distributed systems taxonomy of
Tanenbaum and Steen [14]. After comparing a number of

different message brokers, we chose RabbitMQ [15] for the
UbiBroker architecture. RabbitMQ is an open source project
with an active developer community and available for a wide
range of operating systems and programming languages.

A. Architecture and Processes

Fig. 3 illustrates the client-server architecture of RabbitMQ.
There are two types of processes, the RabbitMQ server process
and client processes. A client process can act both as a
publisher (producer) and a subscriber (consumer) of events
simultaneously. RabbitMQ divides resources into multiple
administration domains called virtual hosts. The server
implementation is available for Windows, Linux/Unix, Mac OS
X and EC2 platforms. Official client implementations are
available in Java, .NET/C# and Erlang that are supported by a
wide range of platforms. Community contributed client
implementations are available for many other programming
languages, e.g. Ruby, Python, PHP, Perl, and C/C++.

Fig. 3. The C/S architecture of RabbitMQ.

B. Communication

The clients communicate with the broker using TCP as the
transport protocol. The core messaging protocol is the
Advanced Message Queuing Protocol (AMQP). Clients can
have multiple connections to the broker, i.e., channels, which
are multiplexed into a single TCP connection to avoid having
multiple TCP connections. Clients publish event messages to
an exchange, where routing decisions are made depending on
the binding information (i.e. the routing_key) stored in the
exchange. Binding is a rule that defines the relationship
between an exchange and a queue informing the exchange in
which messages the queue is interested in. Exchanges support
multiple routing patterns using one of the four alternative
exchange types:

• direct exchange for unicast (and multicast) routing,

• fanout exchange for broadcast routing,

• topic exchange for routing based on matching of dot
separated words with wild cards, and

• headers exchange for routing based on matching key value
pairs.

A message queue is a FIFO buffer maintained at the broker.
A client can subscribe to multiple queues and a queue can be
associated with multiple clients. Finally, subscribing clients can
consume messages from queues either by using push or pull
delivery modes.

Non-AMQP clients connect to the broker using protocol-
specific adapters that transparently translate protocol-specific
methods into their AMQP equivalents and back. Fig. 3 shows
the Web-STOMP adapter that is a simple bridge exposing the
STOMP protocol over emulated HTML5 WebSockets. The
main purpose of the Web-STOMP adapter is to allow web
clients to use the RabbitMQ broker.

AMPQ treats message payload as a byte array and does not
constrain its formatting. However, the utilization of a
middleware benefits from a common structured data format.
Therefore, in the UbiBroker architecture we use text-based
JSON message format due to its lightweight nature, widespread
adoption in web messaging, and support for parsers in many
programming languages.

C. Naming

Clients need to know two categories of names. The first
name is the URI pointing to the adapter on the RabbitMQ
server, which includes the protocol, username, password,
hostname, port and virtual host. The protocol and port vary
between adapters. The second category is the routing_keys, i.e.,
the topics used to route event messages. These names are
independent from the client protocol and are defined by the
developers. Topics in AMQP are not strictly hierarchical. Each
word in a topic is independent, i.e., each word could define an
independent aspect that describes the topic. However, as the
hierarchical structure is easier to comprehend, we prefer a
format where broader categories are listed first and then come
the more limiting sub-words defining a specific location or a
session, for example.

D. Synchronization

AMQP provides optional transactions for channels to
guarantee message delivery between publisher clients and the
RabbitMQ broker. The queues handle and deliver the event
messages in FIFO order to subscribing clients. Further
synchronization needs to be done by the clients if for example
correct ordering of causally related events on different queues
needs to be guaranteed.

E. Consistency and Replication

The RabbitMQ server can be replicated to improve fault
tolerance and/or scalability. Multiple RabbitMQ brokers can be
assigned into a cluster. By default most of the internal
components are replicated with full ACID (Atomicity,
Consistency, Isolation, Durability) capabilities with the
exception of the queues. The queues are located in the node
where they are created which improves scalability and
reliability. If high availability is required, then also the queues
can be replicated, in which case the nodes could be structured
as having one master and the others are mirrored slaves.

F. Fault Tolerance

Clients can decide upon the persistency of event messages.
In the persistent mode the broker stores messages to permanent
storage until they are delivered which protects against broker
crashes and shutdowns. Message delivery from a client to the
broker and from the broker to a client can be guaranteed by two

mechanisms. First, a subscribing client can use AMQP
acknowledgements to inform the broker that it has received or
processed the message. The broker safely holds the messages in
a client's queue until it receives an acknowledgment from the
client, which guards against client crashes. Second, the
publishing of messages can be guaranteed by channel confirms.
Both mechanisms can be performed per message or per
multiple messages simultaneously.

G. Security

RabbitMQ provides optional confidentiality of
communication via the SSL encryption of channels. In terms of
controlling access to the broker, clients need to authenticate
themselves using username and password. RabbitMQ allows
also access control per resource (virtual host, exchange and
queue). In order to perform operations on a resource, users
must have an appropriate permission granted for it. Only
authorized clients can access resources thus restricting misuse
between clients.

V. PROTOTYPE IMPLEMENTATIONS

We have developed atop RabbitMQ multiple prototypes of
context producers, middleware services and applications that
have been deployed on our display network.

A. Context Producers

The Context Producers collect and distribute context
information for context aware applications and logging
purposes. A particular type of context information is the
numbers and demographic attributes (age, gender) of faces
detected from the video feed of the overhead camera in a
hotspot.

B. Middleware Services

1) Logger Service
Logger Service listens to registered topics and stores the

message data into a database for later analysis. The general
purpose Logger Service is motivated by the fact that many of
the event message payloads are already in the format suitable
for system level logs. Logger Service utilizes JSON schemas
and stores only valid messages into a database.

2) Multi-Display Session Manager
Multi-display Session Manager uses RabbitMQ to

synchronize multiple hotspots into a shared and distributed
multi-user application session. Each hotspot has its own state
and context, which Session Manager monitors. If a multi-user
application is to be launched, Session Manager interrupts local
sessions and establishes a shared and distributed session across
multiple hotspots.

C. Applications

1) Ubidoku
Ubidoku is a multiplayer Sudoku, which is played on

multiple hotspots simultaneously. Multi-Display Session
Manager establishes a shared and distributed Ubidoku session
on multiple hotspots. RabbitMQ is used to synchronize gaming

events between the separate components of the distributed user
interface.

2) Map
Map has also a distributed user interface that comprises of a

hotspot and a mobile phone. The hotspot shows a large
interactive map while the mobile phone has a simple interface
for entering text strings to search for points of interest on the
map. The search strings are sent via RabbitMQ.

3) UbiLibrary
UbiLibrary is a service tailored for and deployed at the

hotspot placed at the Oulu City Library. UbiLibrary
dynamically configures its interface according to the current
interaction mode and the demographic information of detected
faces: hidden in the passive mode (no-one is interacting with
the hotspot nor within visual proximity), show context
(demographic) filtered book recommendations in the subtle
mode (face has been detected from the video feed of the
overhead cameras) to entice the user to interact; and full user
interface in the interactive mode (user is interacting with the
hotspot).

VI. PERFORMANCE EVALUATION

A. Performance Evaluation

We have evaluated the performance of RabbitMQ both in a
lab and in a real world setting. The RabbitMQ server process
was installed on a virtual machine running CentOS 6.4 with
two 2.7 GHz CPU's, 4 GB RAM, 40 GB disk and 1 Gbps LAN.
The AMQP was used as the messaging protocol with topic-
based routing. The performance was measured as the average
message delivery rate per subscriber per second during a test
lasting 10 minutes.

1) Lab evaluation
In the lab evaluation the publishers and subscribers resided

in the same 1 Gbps Ethernet LAN with the broker. Subscribers
were configured to acknowledge messages after every 50
received messages. The first lab test assessed message
throughput for different numbers of subscribers bound to a
single topic and for different message payload sizes. Fig. 4
summarizes the results. As expected, the fastest per-subscriber
throughput was achieved with a single subscriber and adding
subscribers decreases throughput. Different message payloads
under 2^9 bytes did not have a significant effect on throughput.
First noticeable drop in the message delivery rate can be seen
between 2^10 and 2^11 byte payloads, where the total message
size exceeds Ethernet's 1500-byte MTU and packets begin
fragmenting. Second drop can be seen between payloads 2^12
and 2^13 bytes, when the virtual machine’s host computer’s
network interface controller started to limit packet flow to
around 120 000 packets per second. RabbitMQ’s flow control
restricts publishers from publishing events faster than they can
be processed.

0

2000

4000

6000

8000

10000

12000

14000

16000

2^5 2^6 2^7 2^8 2^9 2^10 2^11 2^12 2^13 2^14 2^15 2^16 2^17M
e

s
s
a

g
e

 d
e

li
v

e
ry

 r
a

te
 i

n
 m

s
g

/
s

Message payload in bytes

1 Subscriber 2 Subscribers 3 Subscribers

4 Subscribers 5 Subscribers 6 Subscribers

Fig 4. Throughput for different numbers of subscribers bound to a shared topic
and different message payload sizes.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6

M
es

sa
ge

 d
el

iv
er

y
ra

te
 in

 m
sg

/s

Number of subscribers

1 Topic Separate topics

Fig. 5. Throughput for different numbers of subscribers with one shared topic
and with separate individual topics.

The second lab test assessed the effect of having multiple
topics and subscribers involved in the routing process so that
each client subscribed to a separate topic, i.e. each topic had
only one subscriber listening to it at any given point of time.
The message payload was set to 256 bytes. Fig. 5 shows the
throughput as a function of the number of subscribers/topics,
the first test providing the baseline for multiple subscribers
subscribing to one shared topic.

2) Real world evaluation
In the real world evaluation the RabbitMQ clients were

deployed on the actual hotspots in the city of Oulu. The
hotspots have fiber connections with a nominal bandwidth of
10 Mbps. The clients were installed on virtual machines
running CentOS 5.6 with 2.53 GHz CPU, 512 MB RAM and
30 GB disk. The resources of the virtual machines were also
used by the middleware software of the hotspots and the
hotspots served the users normally during the evaluation.

In the first test each client published messages size of 175
bytes into the same topic at a rate of 1000 msg/s whereas only
one client subscribed to the topic to simulate the Logger
Service situation. The highest recorded delivery rates without
and with message persistence were 12976 msg/s and 6805
msg/s, respectively.

The second test simulated a future scenario of a
significantly higher load where in total 333 producers and 340
subscribers were scattered on six different hotspots. The

producers of a particular hotspot published messages to the
same exchange but on different topics. Each subscriber had its
own queue and subscribed to a separate topic, thus, overall, the
system had 60 different topics. The producers published
messages in a steady rate of 5 msg/s and the subscribers auto-
acknowledged each message separately. The publishers were
able to publish up to 1043 msg/s in total, which resulted in
5513 msg/s delivered to subscribers in total. The clients were
not able to produce the messages at the given rate due to the
constrained resources of hotspot virtual machines. Also, the test
needed to be cancelled prematurely due to overloading one of
the network routers, which affected the whole network
performance.

B. Real World Deployment

A single RabbitMQ server instance has been running
continuously for six months serving the aforementioned
context producers, middleware services and applications
deployed across our network of 18 hotspots over a metropolitan
area network. So far, there has not been a single availability
issue due to the message broker being unstable. During the six
month deployment we have had one incompatibility issue with
the clients. The WebSocket implementation in the Web-
STOMP protocol adapter was not compatible with a new
Chrome browser release. Chrome browser releases rigorously
implement the latest version of the evolving WebSockets
specification and thus invalidated the not so rigorous Web-
STOMP clients. We reported the bug to RabbitMQ developers,
who have fixed it since then. While waiting for the Web-
STOMP plugin to be updated, we simply modified the
processing of WebSocket headers in the STOMP library as a
work around.

VII. DISCUSSION

A. Decoupling

In related middleware the choice of the messaging pattern is
divided between content based routing [5, 6, 7, 8] and topic
based routing [4, 8, 9, 10]. AMQP also supports multiple
messaging patterns, but not content based as such. The headers
exchange comes close as it allows key value pairs to be added
into message headers and using them for dynamic filtering of
messages. However, message body is not processed upon. This
is motivated by the fact that message bodies can contain large
amounts of data and processing them to make routing decisions
would decrease the overall performance of the messaging
system. Therefore, the topic and headers exchanges of AMQP
protocol provide a good compromise between the decoupling
of clients and performance.

B. Simplicity and interoperability

Setting up messaging between clients using RabbitMQ is
surprisingly simple. A client only has to include the adapter
library and a couple lines of program code to start publishing
and subscribing events. The development overhead is thus
minimal and considerably smaller than in achieving similar
functionality from scratch. Since the deployment of the
UbiBroker architecture, we have utilized the communication
middleware with web clients and Java components. However,

we foresee much more heterogeneous clients in the future,
which will take up the full power of multiple client
implementations available for RabbitMQ. The same thing
applies to multi-protocol support, since a common toolkit for
building pervasive display applications is not yet a reality.

Among the application developers involved with
developing applications for our hotspots, there have been also
third parties with no previous experience of RabbitMQ and our
hotspot middleware. We provided them with a short online
documentation with simple code snippets as examples of using
the UbiBroker. The documentation provided by RabbitMQ
works as an additional source for developers wanting an in
depth description of features and/or willing to use different
features of RabbitMQ not defined by us. None of the third
party developers needed our assistance in using UbiBroker,
mainly due to the simplicity of the RabbitMQ client model and
the vast documentation available from the RabbitMQ support
community.

C. Stability

The RabbitMQ broker has proven to be very stable. This is
crucial as it reduces maintenance and increases trust among
developers. Without trust they easily resort to ad hoc solutions,
which exists plenty in the web technologies. Ad hoc solutions
can easily become isolated or incompatible with the rest of the
system and difficult to maintain afterwards.

D. Performance

 Performance evaluations revealed hard upper limits for the
message delivery capacity of the proposed architecture.
Increasing the number of subscriber queues affects the overall
performance more than increasing the number of subscribers in
the system. Therefore, for optimum performance it is better to
share queues, i.e., have similar topics for multiple clients when
applicable. Also, using persistent messages decreases the
performance which can be expected. In any case, based on
these evaluations, even a single RabbitMQ message broker will
be able to satisfy the performance needs of our hotspot network
in the future. This conclusion is supported by the second part of
the real world evaluation which revealed that the performance
of the hotspots and the network were the limiting factor instead
of the RabbitMQ broker.

VIII. CONCLUSION

We presented the UbiBroker, event-based communication
architecture for a pervasive display network. The design
requirements were elicited from our experiences of operating a
real world display network for many years and from the third
party developers developing applications for the display
network. The UbiBroker architecture is based on the off-the-
self RabbitMQ open source message broker. We evaluated the
stability and performance of the middleware in a lab setting and
in a real world deployment. We have learned that any
performance bottlenecks are more likely going to originate
from the operating environment than from the broker itself,
even with a single broker instance.

In our ongoing work we are looking at implementing a
seamless JSON based state storage service for automatic

storage and easy retrieval of system state. This would allow
any late joining clients to construct the system state without
having to wait for events to arrive first [6]. Another interesting
challenge is integrating media intensive data such as web cam
streams to the middleware, whose raw data streams cannot be
transmitted through the message broker for practical reasons.

ACKNOWLEDGMENTS

 The financial support of the Academy of Finland, the
Finnish Funding Agency for Technology and Innovation, the
Council of Oulu Region, the European Regional Development
Fund, the City of Oulu, and the UBI (UrBan Interactions)
consortium is gratefully acknowledged.

REFERENCES

[1] T. Ojala, V. Kostakos, H. Kukka, T. Heikkinen, T. Lindén, M. Jurmu, S.
Hosio, F. Kruger and D. Zanni, “Multipurpose interactive public
displays in the wild: Three years later,” Computer, vol. 45, no. 5, pp. 42-
49, 2012.

[2] T. Ojala, H. Kukka, T. Lindén, T. Heikkinen, M. Jurmu, S. Hosio and F.
Kruger, “UBI-hotspot 1.0: Large-scale long-term deployment of
interactive public displays in a city center”, Proc. ICIW’10, Barcelona,
Spain, pp. 285-294, 2010.

[3] S. Tarkoma, J. Kangasharju, T. Lindholm, and K. Raatikainen, “Fuego:
Experiences with mobile data communication and synchronization,”
Proc. PIMRC’06, Helsinki, Finland, pp. 1–5, 2006.

[4] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell and
K. Nahrstedt, “A Middleware Infrastructure for Active Spaces,” IEEE
Pervasive Computing, vol. 1, no. 4, pp. 74-83, 2002.

[5] C. Greenbagh, “Equip: a software platform for distributed interactive
systems,“ Technical Report, Equator-02-002, Equator, 2002

[6] B. Johanson, A. Fox and T. Winograd, “The Interactive Workspaces
project: experiences with ubiquitous computing rooms,” IEEE Pervasive
Computing, vol. 1, no. 2, pp. 67- 74, Apr-Jun 2002.

[7] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson, B.
Bershad, G. Borriello, S. Gribble and D. Wetherall, “System support for
pervasive applications,” ACM Trans. Comput. Syst., vol. 22, no. 4, pp.
421-486, Nov 2004.

[8] T. Sivaharan, G. Blair and G. Coulson, “Green: A configurable and
reconfigurable publish-subscribe middleware for pervasive computing,”
In: On the Move to Meaningful Internet Systems: CoopIS, DOA, and
ODBASE, Springer, pp. 732–749, 2005.

[9] E. Aitenbichler, J. Kangasharju and M. Muhlhauser, “MundoCore: A
light-weight infrastructure for pervasive computing,” Pervasive and
Mobile Computing, Elsevier Science Publishers B. V., vol. 3, no. 4, pp.
332-361, August 2007.

[10] A. Erbad, M. Blackstock, A. Friday, R. Lea and J. Al-Muhtadi, “MAGIC
Broker: A Middleware Toolkit for Interactive Public Displays,” Proc.
PerCom’08, Washington, DC, USA, pp. 509-514, 2008.

[11] T. Ojala, H. Kukka, T. Heikkinen, T. Lindén, M. Jurmu, F. Kruger, S.
Sasin, S. Hosio and P. Närhi, “Open urban computing testbed”, Proc.
TridentCom’10, Berlin, Germany, pp. 457-468, 2010.

[12] T. Lindén, T. Heikkinen, T. Ojala, H. Kukka and M. Jurmu, “Web-based
framework for spatiotemporal screen real estate management of
interactive public displays”, Proc. WWW’10, Raleigh, NC, USA, pp.
1277-1280, 2010.

[13] T. Heikkinen, T. Lindén, M. Jurmu, H. Kukka and T. Ojala, “Declarative
XML-based layout state encoding for managing screen real estate of
interactive public displays”, Proc. MUCS’11, Seattle, WA, USA, pp.
312-317, 2011.

[14] A. S. Tanenbaum and M. Steen, “Distributed Systems: Principles and
Paradigms (2nd ed.)”, Prentice Hall PTR, Upper Saddle River, NJ, USA,
2006.

[15] RabbitMQ project http://www.rabbitmq.com/.

