2013 Seventh International Conference on Next Generation Mobile Apps, Services and Technologies

A Virtual World Web Client Utilizing An Entity-Component Model

Toni Dahl, Timo Koskela, Seamus Hickey and Jarkko Vatjus-Anttila
Center for Internet Excellence
University of Oulu
Oulu, Finland
Email: firstname.lastname @cie.fi

Abstract—The popularity of virtual worlds has increased con-
siderably in recent years. Currently, many service providers are
trying to make it easier for users to access their virtual worlds.
However, accessing a virtual world typically requires a client
application that needs to be versioned for each device platform
and operating system configuration. Using WebGL, an interactive
3D environment can be used on a cross-platform supported web
browser. In this paper, we present a system architecture that uti-
lizes an entity-component model, and a prototype implementation
of a WebGL-based virtual world client to provide a plug-in free,
extensible and open source web client for 3D virtual worlds. The
performance of the web client was evaluated in terms of frame
rate, CPU load, memory consumption and scene processing speed.
Based on the results, the performance of the web client was good
on a desktop PC, but mobile hardware specific optimizations are
required to provide a good user experience on mobile devices.

Keywords—WebGL; web browser; performance; realxtend Tun-
dra; 3D

I. INTRODUCTION

In recent years, the popularity of virtual worlds has in-
creased considerably [1] and they are evolving to become part of
our reality. Currently, many virtual world services and software
development kits (SDKs) for creating virtual world services
are being provided, such as realXtend Tundra!, Second Life?,
Open Wonderland® and Sirikata*. All of these virtual worlds
are trying to improve the accessibility of their services to users.
Accessing a 3D virtual world typically requires the installation
of a standalone client application that needs to be versioned
for each supported device platform and operating system con-
figuration. This is not only an expense for service providers,
but also a nuisance for end-users hindering the adoption of
3D virtual worlds. The rapid evolution of web 3D standards
and technologies have made it possible to develop plug-in free
3D applications that run on a cross-platform supported web
browser. Using WebGL, the interactive 3D environment can be
integrated to be a part of a web page. Many web browsers and
devices support WebGL already and it will also be supported by
mobile devices in the near future.

Currently, there are no plug-in free and open source 3D
virtual world clients available for web browsers that implement
an extensible architecture for 3D virtual worlds. Also, the
demand for easily deployable web clients has increased in the
virtual world industry in recent years. In this paper, we present
an architecture and a prototype implementation of a WebGL-
based web client (hence called the web client) that uses an

Uhttps://github.com/realXtend/naali
Zhttp://secondlife.com/
3http://openwonderland.org/
4http://www.sirikata.com/

978-0-7695-5090-9/13 $26.00 © 2013 IEEE 7

DOI 10.1109/NGMAST.2013.11

extensible entity-component (EC) model [2]-[4] for managing
the object hierarchy in a 3D virtual world scene. The EC model
makes the definition of the 3D scene very flexible, because
the 3D scene consists only of entities that can be customized
dynamically by modifying their components. By using the EC
model, the virtual world architecture can be more simple and
readily extensible. In order to evaluate the performance of the
implemented web client, framerate, memory, CPU load and
scene processing times were measured on a desktop PC and a
tablet device.

The paper is organized as following. Section II introduces
the related work and web technologies utilized in the imple-
mentation of the web client. In section III, the architectures
of client-side and server-side implementations are presented. In
sections I'V and V, experimental setup and results are explained.
In section VI discussion and future work are presented and
finally, in section VII conclusions are made.

II. RELATED RESEARCH

Component-based scene architectures for Web 3D appli-
cations have been studied in few papers. Dachselt, Hinz
and MeiBner implemented an XML based architecture for
component-oriented 3D applications utilizing X3D as the scene
graph basis [5]. Lescinsky et al. describe a Virtue3D system [6]
and Schiefer, Ullrich and Fellner present a software architec-
ture that integrates a RESTful web service into an OpenSG
scene graph [7]. These two approaches allows dynamically
rearranging the scene at run time-time similarly to our EC
model architecture. However, aforementioned architectures do
not utilize the Web 3D technologies currently supported by the
popular web browsers.

Byelozyorov et al. implemented an open modular virtual
world client library for integrating virtual worlds in a web
browser using XML3D and other technologies. [8] However,
the problem with their implementation is that it requires a
custom version of Google Chrome web browser. Additionally,
they do provide a modular client framework.

Chen and Xu evaluated WebGL-based multiplayer online
game framework [9]. Similarly to our approach, Chen and Xu
utilized WebSocket, WebGL and three.js technologies in the
implementation and they analytically showed that WebGL and
WebSockets are feasible for creating multiplayer online games.
However, their implementation is mainly intended for simple
multiplayer online games.

cps’s

Conference Publishing Services



III. SYSTEM ARCHITECTURE

Based on WebSocket® and WebGL® technologies, a virtual
world web client for viewing an extensible virtual world was
developed. WebGL provides a JavaScript API for 3D rendering
for the web browser. Plenty of WebGL frameworks have been
created, such as three.js, PhiloGL or GLGE, to simplify the
development of WebGL applications. Three.js framework’ was
chosen for the implementation, because it is a very mature open
source WebGL framework providing many useful features that
can be utilized in the web client. Examples of these features are:
a WebGL renderer, a scene graph, perspective and ortographic
cameras, morph and keyframe animation, lights and shadows
and 3D math utilities.

The WebSocket Javascript API define a two-way connection
over a TCP socket between a web-based client and a remote
host. A WebSocket can be used to implement a real-time syn-
chronization of data between multiple web browser users over
the Internet. This is particularly useful for a virtual world web
client, where the network utilization is high.

In figure 1, the top level architecture of the virtual world
system is presented. In the system, 3D asset data are stored
in the data server which can be an ordinary HTTP server.
Additionally, the web client code itself is delivered to the web
browsers by the data server. The simulation server distributes
the 3D scene to the clients and simulates all the physics and
scene entity changes and transmits the results to the clients.
It downloads the required asset data from the data server and
passes references for the assets used in the scene to the clients.
In the system, realXtend Tundra (hence called Tundra) virtual
world server was used as a simulation server, because it is an
open source and easily customizable platform. A WebSocket
module that manages the synchronization of web clients, was
implemented in the Tundra server. Tundra and the WebSocket
module will be presented in more detail in Section III-A.

Native Client

Simulation

Server Data Server

——
Web Client

Web Client

WebClient

Fig. 1. The top level architecture of the virtual world system.

Native clients and web clients are connected to the simu-
lation server and the data server. Both the native and the web
clients communicate with the simulation server in a similar
manner, the difference being that web clients use WebSockets
and native clients use ordinary TCP and UDP-sockets for com-

Shitp://www.w3.org/TR/websockets/
Shttps://www.khronos.org/registry/webgl/specs/1.0/
Thttp://threejs.org

munication. The clients request the needed assets from the data
server by using the references provided by the simulation server.
The EC model is used by the clients and by the simulation server
for managing the entities in the virtual world.

A. RealXtend Tundra

Tundra implements an EC model based architecture, which
provides a mechanism for building easily extensible virtual
worlds. It was chosen as the simulation server because it can
be flexibly extended by creating additional modules and by
customizing or creating new component implementations for
entities. Also, the behaviour of entities, for example avatars, on
the server or on the native Tundra client can be easily scripted
using the integrated JavaScript scripting environment. [2]

The EC model attempts to simplify the scene object sys-
tem by dividing the different object functionalities in different
components making the management of the objects and the
maintenance of the system architecture easier. At a general
level, virtual world objects or entities are only unique identifiers
which have no data. Components can be added to entities and
they can be any type and contain any type of data. Each scene
object consists of predefined components which are managed
by the component manager. [3], [4]

An example of the EC model is given in figure 2. Objects
1, 2, and 3 are entities that consist of different components
that each implement a certain functionality. An example of
basic components in Tundra are Mesh, Placeable, Light, Sky
and Camera. All the basic entity-components that are used in
Tundra, are implemented in the web client to provide good
interoperability between the server and the client.

For web client synchronization, a WebSocket module was
implemented in the Tundra server. WebSocket++ library was
used in the implementation of the WebSocket module because
it provides an easy event-based API and because Tundra is
written in C++-language. In the module, Tundra scene man-
ager provides data of the changes in the virtual world to the
WebSocket module. The data are the same for native Tundra
clients and web clients. The WebSocket module processes this
data and converts them to JSON (JavaScript Object Notation)
formatted event messages that are sent to web clients through a
WebSocket.

The JSON format is used as the message data format be-
tween the server and web clients to reduce the processing time
needed for parsing on the web client side. JSON is a lightweight
data-interchange format which is easy for machines to parse
and generate. However, because JSON is not a compressed data

‘ Component manager ‘

Component 1 Component 2 Component 4

Fig. 2. An example of the EC model.



format, using it increases the amount of data transferred via a
WebSocket and it is not optimal for use cases where the network
bandwidth is limited.

B. Web Client Architecture

The relationship between the modules of the web client is
illustrated in figure 3. The web client framework provides an
easily accessible API for the application developers by which
they can define settings for each core module. Next, the modules
of the web client will be described in detail.

1) WebSocket Manager: The WebSocket manager handles
the WebSocket connection with the simulation server and parses
the JSON event messages that come through the WebSocket.
An event name and related data are extracted from the JSON
message and a function corresponding to the event name is
executed using the data as a function argument. These events
are utilized mainly in the EC manager.

2) EC Manager: The EC manager is responsible for creat-
ing entities and their specific components from the parsed JSON
messages. It reacts to specific events triggered by the Web-
Socket manager, which are “EntityAdded”, ”EntityRemoved”,
”ComponentsRemoved”, ”ComponentsAdded”, ” AttributesRe-
moved”, ’AttributesAdded” and " AttributesChanged”, of which
the most important are EntityAdded and AttributesChanged
events.

The data contained in the EntityAdded event define a whole
entity which is existing in the simulation server scene. This
data include, for example, unique entity id, entity name, and
its component data. AttributesChanged events are sent from the
simulation server when some of the attributes of components
in the virtual world scene, have been changed. An example of
an attribute synchronization event is shown in figure 4. In the
figure 4, a JavaScript script running on the simulation server
moves an entity by giving a new transform value to its Placeable
component. The propagation of the transform value is shown
by a solid line arrow and the dotted arrow represents a network
event message sent through a WebSocket.

3) Asset Manager: The asset manager requests asset data
from the data server if a specific component of an entity requests

WebGL canvas

.

WebGL Renderer Controls

Scene Data

Scene Manager H EC Manager H WebSocket Manager ‘

Scene Sync EC Sync

Asset Data

Asset Manager
Asset Request

HTTP Get

Event Data

Fig. 3. Basic architecture of the web client.

Simulation
Web Client Server

Entity Entity

Transform Transform
Attributes-

Changed

Placeable < Placeable

Transform

Script

Fig. 4. An example of a synchronization event between two entities of which
one is located in the simulation server and the other one is in the web client.

an asset. A request queue functionality was implemented in
the asset manager, so an asset with the same name would be
requested only once. The asset manager caches all the loaded
assets in the memory and indexes them by their name. Assets
are categorized by their types, which are textures, materials and
3D meshes, so different types of assets could be easily searched
when needed locally in the web client. When a request for an
asset is made, the asset manager will check if the asset is already
downloaded and returns a reference to the asset if it was found,
otherwise it will request the asset from the data server.

After downloading the asset, it will be parsed. In our im-
plementation, support for Ogre mesh format was implemented
because Tundra uses it internally. Various texture formats are
supported such as DDS, JPEG, GIF or PNG. New parsers for
different 3D file formats and texture formats can be added easily
to the asset manager if needed.

4) Controls: Entities can be controlled by using the controls
module and a Controller component that can be added into an
entity, as illustrated in figure 5. The controller component can
request a control script from the controls module. The control
script implements a specific control type such as free look
controls which allow a user to use keyboard and mouse to move
an object around the scene freely. If a control component is
added to an entity it will apply the 3D transformation changes
caused by the control script to the entity. In the web client,
Placeable component stores the main transform information of
the entity and applies the transformation to its children, which
in the figure 5 is a mesh component.

5) Scene Manager: The scene manager is paired with a
WebGL renderer. Components can request their 3D data to be

Entity

Transform

Placeable

Control Transform
script
Controller

A

Move
left

User
Input

Fig. 5. An example of a controller component as a part of an entity in the
web client. Transforms caused by the controls are propagated to the Placeable
component and its children.




added in the scene through the scene manager. The WebGL
renderer manages the cameras, sky box and lighting of the scene
and it runs the rendering loop that calls the three.js WebGL
renderer periodically. All the 3D data added to the scene are
rendered by the WebGL renderer which feeds the three.js scene-
graph data to the GPU.

IV. EXPERIMENTAL SETUP

Performance measurements were conducted in order to eval-
uate the feasibility of the web client. Network performance was
omitted from the experiments, because the main focus in our
research is on the performance of the web client.

A. Devices and tools

In table I, the test devices are presented. Because the tablet
device used in the testing has a quite limited memory, it is
important to know how much free RAM for the web client is
actually available while conducting the measurements. This is
not relevant for a PC, because the test scenes will never exceed
the memory limitations.

For performing the CPU and the memory measurements,
tools provided by Google Chrome web browser are used. The
CPU load is inspected by using the CPU profiler tool and the
memory consumption is measured by using the heap snapshot
tool. For measuring the frame rate, an additional functionality
was added to the web client because Google Chrome did not
inherently provide a good way for measuring the frame rates.
The approximate processing times of the test scenes is measured
by using a stopwatch.

B. Methodology

The web client is evaluated in terms of

1) CPU load. For measuring the CPU load, a pre-
calculated circular path was added on the XY-plane
around the test scenes and the radius of the path was
given a large enough value to make the whole scene
visible in the camera frustum. The camera is moved
four laps along the path to get an average result of the
measurements and it looks always to the centre of the
scene. The most heavy-weight software routines of the
web client are then extracted and categorized.

2)  Frame rate. The frame rate the web client is measured
using the same setup as in the CPU load measure-
ments.

3)  Memory consumption. The memory consumption of
the test scenes on the web client are measured after

TABLE I. TEST DEVICES
Device CPU GPU RAM Free Operating
RAM System
Tablet: NVIDIA NVIDIA 1GB 408 MB Android
High-end Tegra 3 Tegra 3 4.1.1
tablet Quad ULP
Core GeForce,
Q8500, 416 MHz
1.2GHz
PC: Intel Quadro 4GB Not Ubuntu
Lenovo Quad 600, 640 relevant 12.04
Think- Core MHz
Center Q8500,
2.66 GHz

the scene has finished loading. For comparison, the
memory consumption of the web client without any
test scene loaded is measured.

4)  Scene processing time. For measuring the processing
time of each test scene the network delay of loading
the scene is omitted from the measurements.

In table II, the test scenes used in the evaluation are listed.
The 3D City High scene is a model of a nine block area at
downtown Oulu, Finland. It serves as a good stress test scene
and the 3D City Low scene is used for testing how the reduction
of polygons affects the performance of the web client. The 3D
City High scene is rendered using high rendering settings. For
the settings, the shader program precision was set to high and
the size of the rendering area was set to full screen. The Outdoor
scene is a medium quality scene and represents a usual Tundra
scene in terms of the scene size and the number of the entities.
For comparing the web client performance on the PC and on
the tablet device, both Outdoor scene and the 3D City Low
scene were tested only with low rendering settings. The low
rendering settings were used so that measurable frame rates
could be achieved with the tablet and the same settings were
used on PC so the results would be comparable. For the low
rendering settings, the precision of the shader programs were
set to the lowest value and the rendering resolution was halved.
Also, the dimensions of the rendering area on the PC were set
to the same values as on the tablet.

V. RESULTS

In this section, the experimentation results are presented and
analysed.

A. CPU load

The CPU measurement results are presented in figures 6
and 7. Differences were observed with the CPU idle time
and the other processing time between the tablet and the PC.
Interestingly, the more heavy the test scene was, the more the
CPU idle time increased. Because rendering a lower quality
scene takes less time for the GPU to render, the web client can
call the render function and other related functions more often.
This increases the CPU load and reduces the CPU idle time.
With a higher quality scene, the rendering takes longer on the
GPU causing the the CPU to wait for rendering to complete,
thus decreasing the CPU load and increasing the CPU idle time.

However, on the tablet, other tablet processes seem to
dominate the overall CPU usage and reduce the web client
performance. Also, because the tablet CPU is weak compared to

TABLE II. TEST SCENES
Name Polygons Size on Files Enti-
Disk ties
3D City 315833 260.77 Meshes: 59 files (130MB) 74
High MB Materials: 61 files (67 kB)
Textures: 71 DDS files (131 MB)
3D City 30395 16.51 Meshes: 58 files (15.8 MB) 73
Low MB Materials: 60 files (65.8 kB)
Textures: 70 DDS files (649 kB)
Outdoor 100877 36.3 MB Meshes: 78 files (33.6 MB) 90
Materials: 53 files (52.5 kB)
Textures: 5 PNG files and 5 JPEG
files (1.8 MB)

10




60.00%
50.00% 7
40.00%
30.00%
20.00%

10.00%

EMaterial processing
B Rendering

O Other processing
Eldle

3D City Low, Low settings
Outdoor, Low settings

0.00%

3D City High

Fig. 6. The CPU load of each test scene on the PC.

I Material processing
[ Rendering

O Other processing

B idle

3D City Low, Low settings Outdoor, Low settings

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Fig. 7. The CPU load of each test scene on the tablet.

the PC CPU, the idle-time on the tablet is zero in practice. The
effect of the weak CPU can be seen in the frame rate differences
between the PC and the tablet, as shown in the next section.

B. Frame rate

In figure 8, the average frame rates for each test scene are
illustrated. The 3D City Low scene has slightly higher FPS
(Frames per Second) value than the Outdoor scene on the PC,
but smaller FPS value than the Outdoor scene on the tablet.
Also, it can be seen in figure 8 that the web client performs
quite well on the PC even with the 3D City High scene.

160

140 §

120
%)

100 -
g 3D City High
g 80 23D City Low, Low settings
E 50 O Outdoor, Low settings
o
= 40

20

. s

PC Tablet

Fig. 8. Measured average frame rates for each test scene.

The Outdoor scene has more meshes and they are more

11

complex than in the 3D City Low scene. However, the 3D City
Low scene uses much more textures and more materials than
the Outdoor scene. Zorrilla et al. concluded that WebGL frame
rate on mobile hardware is limited the most by the number
of the objects rendered simultaneously. [10]. Here, we observe
that also the amount of the materials has also an effect on the
frame rate on mobile devices. Because the material processing
is CPU oriented and the 3D City Low scene has more materials
and more complex surfaces compared to the Outdoor scene, the
3D City Low scene has lower FPS. Because the CPU is not a
bottleneck on the PC, the frame rate difference between these
scenes is minimal.

C. Memory consumption

In figure 9, the memory consumption of each test scene
loaded in the web client is shown. The memory footprint of the
3D City High scene was not measured on the tablet because
it had not enough processing power and memory to load the
test scene. The Outdoor scene was not measured on the tablet,
because it had not enough free memory to generate the heap
snapshot, although it had enough capacity to load the scene.

There was a small difference of 16 megabytes in memory
footprints between the tablet device and the PC. The 3D City
Low scene consumed a bit more memory on the PC than on the
tablet. We infer that this is caused by more aggressive garbage
collection on the mobile version of Google Chrome, because
mobile devices have more limited memory than desktop com-
puters.

D. Processing time

Figure 10 shows the time consumed by the web client in
processing the test scenes. The processing time includes the
time used in parsing the meshes, parsing the material files,
processing the texture files and creating the actual scene objects.
As shown in figure 10, processing the Outdoor scene on PC
took about the same time as processing the 3D City Low scene.
On the tablet, the difference is much greater. This difference is
presumably related to the memory consumption of the scene
objects. Objects of the Outdoor scene consume much more
memory than the 3D City Low scene and the memory space
in the tablet is very limited, so processing the Outdoor scene on
the tablet may invoke more browser garbage collection cycles
thus increasing the processing time of the scene.

300

250 -
— 200 -
ﬂé E No scene
@ 150 B30 City Low
a 03D City High
T 1o £ Outdoor
*

50

. —N\ Y
PC Tablet

Fig. 9. The memory consumption of the web client for loading a test scene.



90
80
5 ™
5
€ 80
<7}
€ 5 W3D City High
g e [§3D City Low
'; 0 Outdoor
£ 2
@
@ 20
o
o
a 1o
0

PC Tablet

Fig. 10. Processing time of the test scenes.

VI. DISCUSSION

The measurements show that virtual world web clients have
a bright future on PCs, but further development must be done on
mobile devices to achieve tolerable performance. Optimization
must be done on the web client side, but also the mobile
hardware must evolve so it is more capable of processing larger
3D scenes on a web browser. For larger 3D scenes the weak
CPU and the lack of RAM memory are the obvious bottlenecks
on mobile devices.

The web client can be optimized for mobile devices for
example by improving the scene management and rendering by
more advanced algorithms, such as oct-trees, occlusion culling
or tiled rendering. If a mobile device has better GPU than CPU,
some CPU intensive calculations could be possibly migrated
into GPU shader programs. On mobile devices, the limitations
in terms of performance are still GPUs, CPUs and memory, bus
speed and FPUs (Floating Point Unit). Evolution of these hard-
ware components are limited by energy consumption issues and
advances in mobile battery technology [11], [12], but however
these components have been improved a lot in recent years.
Nevertheless, also the WebGL performance must be improved
in the mobile web browsers to achieve maximum efficiency for
rendering [10].

The EC model was very helpful for dynamically managing
the 3D scene. Because we implemented the basic components
that are used in the Tundra server, most of the basic Tundra
scenes work on the web client. If a scene uses a component
that has not been added into the web client yet, it can be easily
implemented and added into the web client. Also, if one makes
changes to the scene entities running on the simulation server,
the changes are delivered to the web client and easily applied to
the scene entities.

Our web client works on every web browser that properly
supports WebGL and WebSockets, thus making it available for
many users both on mobile and desktop devices, compared to
other approaches that require installing a custom web browser
or a plug-in. Our intentions are that the web client could be used
and extended easily by web developers for creating web clients
for various virtual world servers. For the future development,
we aim to evaluate the effect of network quality on the perfor-
mance of the web client. The web client implementation can be
found from: https://github.com/Chiru/Chiru- WebClient .

12

VII. CONCLUSION

In this paper, we have presented an extensible architecture
for a virtual world web client that utilizes WebGL and Web-
Socket technologies and the EC model for managing the virtual
world entities. The EC model makes the web client scene model
easily extensible and dynamic, because the scene is defined by
its entities. The architecture allows developers to easily extend
their virtual worlds and the web client by implementing more
components. Altogether, the web client will serve as a good
foundation for creating virtual world web clients for different
virtual world servers and it is easily accessible for many users
through a modern web browser. As shown by the performance
measurements, the web client has a good performance on PC,
but more work must be done on mobile devices to achieve a
good performance with web-based 3D virtual worlds.

ACKNOWLEDGEMENT

The authors would like to thank the staff at the Intel and
Nokia Joint Innovation Center for their support. This work has
been carried out in the Tekes Chiru Project.

REFERENCES

[1] KZero Worldswide, “Kzero universe chart g4 2012 (accessed
28.2.2013.),” 2012, url: http://www.slideshare.net/nicmitham/
kzero-universe-q4-2012.

[2] T. Alatalo, “An entity-component model for extensible virtual worlds,”
Internet Computing, IEEE, vol. 15, no. 5, p. 30, Sept.-Oct. 2011.

[3] M. West, “Evolve your hierarchy (accessed 13.11.2012),” 2007, url: http:
/lcowboyprogramming.com/2007/01/05/evolve-your-heirachy/.

[4] C. Stoy, “Game programming gems 6.” Charles River Media, 2006, pp.

393-394.

[S] R. Dachselt, M. Hinz, and K. Meissner, “Contigra: an xml-based archi-
tecture for component-oriented 3d applications,” in Proceedings of the
seventh international conference on 3D Web technology, ser. Web3D ’02.
New York, NY, USA: ACM, 2002, pp. 155-163.

[6] G. Lescinsky, C. Touma, A. Goldin, M. Fudim, and A. Cohen, “Inter-
active scene manipulation in the virtue3d system,” in Proceedings of the
seventh international conference on 3D Web technology, ser. Web3D ’02.
New York, NY, USA: ACM, 2002, pp. 127-135.

[71 A. Schiefer, R. Berndt, T. Ullrich, V. Settgast, and D. W. Fellner,
“Service-oriented scene graph manipulation,” in Proceedings of the 15th
International Conference on Web 3D Technology, ser. Web3D 10. New
York, NY, USA: ACM, 2010, pp. 55-62.

[8] S. Byelozyorov, V. Pegoraro, and P. Slusallek, “An open modular ar-
chitecture for effective integration of virtual worlds in the web,” in
International Conference on Cyberworlds (CW), 2011, pp. 46-53.

[9] B. Chen and Z. Xu, “A framework for browser-based multiplayer online
games using webgl and websocket,” in 2011 International Conference on
Multimedia Technology (ICMT), 2011, pp. 471-474.

[10] M. Zorrilla, A. Martin, J. R. Sanchez, I. Tamayo, and I. G. Olaizola,
“Html5-based system for interoperable 3d digital home applications,” in
2012 Fourth International Conference on Digital Home (ICDH), 2012,
pp. 206-214.

[11] A. Mulloni, D. Nadalutti, and L. Chittaro, “Interactive walkthrough of
large 3d models of buildings on mobile devices,” in Proceedings of the
twelfth international conference on 3D web technology, ser. Web3D ’07.
New York, NY, USA: ACM, 2007, pp. 17-25.

[12] D. Nadalutti, L. Chittaro, and F. Buttussi, “Rendering of x3d content
on mobile devices with opengl es,” in Proceedings of the eleventh
international conference on 3D web technology, ser. Web3D *06. New
York, NY, USA: ACM, 2006, pp. 19-26.



