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a b s t r a c t

Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on mod-

ern societies. WM involves a set of processes ranging from waste collection to the recycling of the collected

materials. The proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can

be adopted in SCs and help in WM. Novel approaches that involve dynamic routing models combined with

the IoT capabilities could provide solutions that outperform existing models. In this paper, we focus on a SC

where a number of collection bins are located in different areas with sensors attached to them. We study a

dynamic waste collection architecture, which is based on data retrieved by sensors. We pay special attention

to the possibility of immediate WM service in high priority areas, e.g., schools or hospitals where, possibly,

the presence of dangerous waste or the negative effects on human quality of living impose the need for im-

mediate collection. This is very crucial when we focus on sensitive groups of citizens like pupils, elderly or

people living close to areas where dangerous waste is rejected. We propose novel algorithms aiming at pro-

viding efficient and scalable solutions to the dynamic waste collection problem through the management of

the trade-off between the immediate collection and its cost. We describe how the proposed system effec-

tively responds to the demand as realized by sensor observations and alerts originated in high priority areas.

Our aim is to minimize the time required for serving high priority areas while keeping the average expected

performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the pro-

posed algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths

and weaknesses. We claim that, local authorities could choose the model that best matches their needs and

resources of each city.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In modern societies, the increased population accompanied by

the industrial development leads to a boost of economies. Boom-

ing economies, rapid urbanization and the rise in community living

standards have greatly accelerated the waste generation rate in de-

veloping countries (Minghua et al., 2009). Through this perspective,
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aste Management (WM) is a critical issue for every modern soci-

ty/city. The reason is that waste should be efficiently managed in

rder to minimize its negative effects in the environment and, thus,

o increase the quality of life for citizens. Local authorities or private

ompanies can undertake the responsibility to provide a high qual-

ty mechanism for WM. In the past, important improvements have

een observed in WM. Related research has identified the relevant

takeholders and organizations that may have an interest in adequate

M. For instance, some of the reported stakeholders are: national

r local governments, municipal authorities, city corporations, non-

overnmental organizations, households, private contractors, Min-

stries of Health, Environment, Economy and Finance, recycling and

aste processing companies.

The WM process involves a number of issues ranging from the col-

ection of waste to the recycling. Waste Management Systems (WMSs)
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re devoted to provide functionalities that effectively handle the

ifecycle of various types of waste. Information and Communication

echnologies (ICT) can offer many advantages when incorporated in

MSs. Sensors and actuators enable the new era of Internet of Things

IoT) that can be adopted in Smart Cities (SCs) and help in WM. The

rovision of intelligent applications that control the entire line of WM

ased on sensor observations facilitates the necessary processes and

aximizes the performance. A SC could deploy a number of sensors

ttached to waste bins in order to gather/collect data related to waste

e.g., weight, odor). A central system could have a view on the waste

nformation realized ‘in-the-field’ and, thus, it could be able to take

he appropriate decisions related to the demand for waste genera-

ion/collection. In addition, such system could be responsive when

lerts are triggered in real time. For instance, the system could re-

rrange the routes of collection trucks, when necessary, leading to a

ynamic WM scheme.

Prior research focuses on the collection, transfer and transport

ractices and has proposed the appropriate strategies for collection

chemes, route planning, collection schedule and the appropriate in-

rastructure or the number of the required resources for waste col-

ection. However, some important issues are still open. For instance,

here is the need of adopting effective methodologies for the manage-

ent of: (a) dynamic changes in the production of waste and (b) how

ities affect WM. Actually, these two issues are related to how and

hen waste is produced and what are the appropriate solutions for

ts efficient management in real time. Societies need an intelligent

ramework that dynamically responds to changes in the production

f waste especially when waste is produced in critical (high priority)

reas. As a critical (high priority) area in a city, we could define ar-

as that are mostly affected by waste, especially, when the collection

rocess is not frequently performed. There are specific types of waste

hat should be immediately collected and recycled due to the nega-

ive effects that they have in humans’ lives. A representative exam-

le involves an area where specific amenities are located like schools,

ospitals, university campuses, etc. In such areas, waste bins close to

he discussed amenities should be immediately depleted. In addition,

igh priority areas could be also characterized areas where ‘sensitive’

roups of people are living (e.g., people living close to hospitals or

uel stations). Waste bins located in such areas could be character-

zed as high priority bins. High priority bins are related to: (i) waste

angerous for human lives (e.g., chemicals) or (ii) sensitive areas that are

eavily affected by waste disposals (e.g., schools, gas stations); such ar-

as are characterized either by the type of the amenities located in them

r by the type of people living at them. In both cases, such bins should

e depleted as soon as possible in order to minimize the effect of

aste into the environment and the human lives. For instance, hos-

itals’ waste should be immediately collected to minimize the risk

f exposing humans to chemicals or other medical-related materi-

ls. Bins close to gas stations should also be immediately collected to

inimize the risk of fire. The immediate collection of waste in high

riority areas becomes imperative when no special process is applied

or recycling dangerous materials.

In this paper, we present a WM framework to be adopted by a SC.

efinition. (Bakici et al., 2013). A SC is a high-tech intensive and ad-

anced city that connects people, information and city elements us-

ng new technologies in order to create a sustainable, greener city,

ompetitive and innovative commerce, and an increased life quality.

iming to the increased quality of life, the proposed framework is re-

ponsible for deriving dynamic decisions for the efficient collection of

aste especially for the management of high priority bins. The pro-

osed system provides routing functionalities for a number of trucks

nd offers routes adaptation when waste collection needs are iden-

ified in high priority areas. The priority of each area is defined ac-

ording to the type of the area, however, the system could be eas-

ly extended and rely on top of different constraints. An intelligent
echanism undertakes the responsibility of dynamically adapting

he route for each collection truck when waste bins, in high prior-

ty areas, are full. Hence, the system gives priority to sensitive ar-

as, thus, maximizing the quality of life for citizens together with

he maximization of the performance for waste collection. We pro-

ose a set of collection strategies realized into four (4) models for

acing the aforementioned scenario. Each strategy has specific char-

cteristics concerning the method that the system adopts to manage

igh priority bins. The aim is to provide a set of solutions for the ef-

cient collection of the high priority waste bins in a SC. We perform

large number of simulations in order to reveal the advantages of

ach model and present comprehensive evaluation results. Our aim

s to provide a comparison between the proposed models and, ac-

ordingly, stakeholders can easily select one of them according to the

pecial needs of each area. The following list reports on the contribu-

ions of our work:

• we adopt of the notion of high priority areas and high priority

bins, respectively, in WM;
• we propose four (4) WM models for serving the immediate col-

lection of high priority bins;
• we provide routing functionalities and routing adaptation for

serving areas that are characterized as critical (high priority);
• the proposed models manage the trade-off between the immedi-

ate collection and the cost for waste depletion;
• the proposed framework dynamically responds to changes in the

production of waste in high priority areas;
• we provide a comprehensive experimental evaluation of the pro-

posed models that reveal their strengths and weaknesses over a

large set of simulation scenarios.

e focus on areas that are mainly affected by waste disposal. Some

xamples of areas and amenities that could be characterized as high

riority are: (i) hospitals (e.g., people can be exposed to medical-

elated materials), (ii) schools (e.g., pupils or students can be con-

idered as ‘sensitive’ target group as far as the waste disposal conse-

uences concerns), (iii) areas close to fuel stations (e.g., there is an

ncreased risk of fire, especially in areas where high temperatures

re observed), (iv) areas close to factories that utilize materials not

upported by special plans for immediate treatment (e.g., in the case

here no specific individual collection and recycling processes are

resent); (v) areas that, for specific reasons, the local authorities want

o be managed as high priority (e.g., squares, places where people are

athered, playgrounds); In these cases, the seasonal aspects could be

lso applied (a location could be of high priority only for a specific

ime interval, e.g., various events, touristic areas).

The paper is organized as follows. Section 2 presents related re-

earch efforts while in Section 3, we discuss the proposed frame-

ork. We analytically describe the system and give its main char-

cteristics. In Section 4, we describe the proposed models for man-

ging high priority waste bins and in Section 5, we describe the ap-

lication perspectives of our framework. In Section 6, we report on

he performance of each model. We compare the proposed models

or important performance metrics for waste management. Finally, in

ection 7, we conclude our paper by giving future research directions.

. Prior work

A number of dynamic models for waste collection have been pro-

osed by the research community. There is a significant interest

or dynamic models since static approaches cannot handle the dy-

amic nature of IoT potentiality. The dynamic scheduling and rout-

ng model discussed in Johansson (2006) adopts capacity sensors

nd wireless communication infrastructure, thus, it is able to be

ware of each bin’s state. The mechanism incorporates analytical

odeling and discrete-event simulation in order to achieve real-time

ynamic routing and scheduling. The authors in Wy et al. (2013)
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introduce a rollon–rolloff routing, serving multiple disposal facili-

ties, with huge amounts of waste at construction sites and shopping

districts. The model adopts large neighborhood search with iterative

heuristic algorithms. In Nuortio et al. (2006), an improved dynamic

route planning is discussed. The authors enhance a guided variable

neighborhood threshold meta-heuristic adapted to the problem of

waste collection. The authors in Reed et al. (2014) propose a model

which incorporates the Ant Colony System (ACS) in order to achieve

dynamic routing. The authors treat the location of bins as a spatial

network and apply the k-means algorithm in order to cluster the bins

into a set of partial clusters.

In Zsigraiova et al. (2013), the authors combine routing and

scheduling optimization. Historical data applied to individual bins es-

tablish the daily circuits of collection points to be visited. Planning

is applied to scheduling for better system management. The authors

in Li et al. (2008) consider dynamic scheduling over a set of previ-

ously defined collection paths. The main objective of the approach is

to minimize the total operational and fixed costs for collection trucks.

In Nadizadeh & Nasab (2014), the authors introduce a dynamic rout-

ing model based on fuzzy demands by assuming the demands of the

customers as fuzzy variables. The presented model incorporates a

heuristic approach based on fuzzy credibility theory. A mathematical

formulation methodology is proposed in Ramos et al. (2014) for the

development of a plan of service areas, defining routing and schedul-

ing. The model takes into consideration possible new alternative so-

lutions as it manages the system as a whole. In Buhrkal et al. (2012),

the authors propose routing with time windows which analyze the

logistics activity within a city. The proposed mechanism finds the cost

of optimal routes in order to guide the trucks to bins with an adap-

tive large neighborhood search algorithm. In Stellingwerff (2011), the

authors evaluate dynamic planning methods applied for waste collec-

tion of underground bins. The proposed model reduces the amounts

of carbon dioxide released in the environment by making the dy-

namic routing more effective. Discrete event simulation is the tech-

nique adopted in Mes (2012). The authors present a model that ap-

plies dynamic planning to exploit information transmitted through

motion sensors embedded in underground bins. The authors in Milić

& Jovanović (2011) develop a routing algorithm with a mobile mea-

suring system on the trucks. They perform stochastic dynamic rout-

ing which makes corrections during or after the execution of the ex-

isting routes.

The authors in Minh et al. (2013) introduce a memetic algorithm

to perform routing enforced with time windows and conflicts con-

text. The model incorporates a combination of flow and set parti-

tioning formulation to achieve multi-objective optimization. Another

heuristic solution is proposed in Hemmelmayr et al. (2013). The au-

thors state the waste collection as a periodic truck routing prob-

lem with intermediate waste depots. The model incorporates vari-

able neighborhood search and dynamic programming in order to

achieve the optimal solution. In Von Poser & Awad (2006), the au-

thors propose a genetic algorithm to solve the dynamic routing prob-

lem. Specifically, the model assumes that the waste collection prob-

lem could be treated as a Traveling Salesman Problem (TSP). Then, the

genetic algorithm optimally solves the TSP. The authors in Mes et al.

(2013) propose a heuristic method for the dynamic routing consid-

ering several tunable parameters. Sensors enable reverse inventory

routing in dense waste networks. As a waste network, they consider

a network of waste bins located inside a specific city. Heuristics deal

with uncertainty of daily and seasonal effects. The model discussed

in Bing (2014) deals with the collection of plastic waste which is dif-

ferentiated from other solid waste. Collection routes are redesigned

by adopting an eco-efficiency metric with balancing the trade-off be-

tween the costs and environmental issues. In Anagnostopoulos and

Zaslavsky (2014), the authors propose a novel IoT-enabled dynamic

routing model for waste collection in a SC. The proposed model is

robust in case of an emergency (i.e., a road under construction, un-
xpected traffic congestion). Finally, the authors in Anagnostopoulos

t al. (2015a) extend the system presented in Anagnostopoulos &

aslavsky (2014) and propose a dynamic routing model to face the

ase of truck inefficiency due to overloading or damage. The paper

ncorporates IoT technology applied for waste collection in a SC. In

nagnostopoulos & Zaslavsky (2014); Anagnostopoulos et al. (2015a),

he waste collection is addressed as a problem which can be solved

ith IoT infrastructure incorporated in SCs.

.1. Significance of our research

As described, relevant research in WM mainly involves so-

utions related to collection strategies. These strategies involve

outing and/or scheduling algorithms that deliver the optimal

aths/schedules for waste collection. The ultimate goal is the mini-

ization of the operational cost. The related work efforts deal with

he problem through the economic perspective of the WM problem.

ence, many efforts provide solutions for the dynamic scheduling

nd routing when deviations from the initial plan are present. In this

aper, we go a step further. We study the problem not only through

he economic perspective; however, we consider the problem as a

ajor problem that affects human lives. We consider high priority

reas and high priority waste bins, respectively. Our aim is to provide

igh quality solutions for the management of high priority bins when

here is a need for the immediate collection. Our approach differs

ith previous models in the following aspect. In Anagnostopoulos &

aslavsky (2014), the authors focus on the design of a dynamic rout-

ng algorithm capable of handling collection truck routing due to road

bnormalities (e.g., under construction) or unexpected traffic conges-

ion. In Anagnostopoulos et al. (2015a), the authors extend the algo-

ithm proposed in Anagnostopoulos & Zaslavsky (2014) by incorpo-

ating the management of the truck inefficiency due to overloading

r damages during the collection process. In this paper, the proposed

odels are based on a dynamic routing algorithm which is an ex-

ension of the previous work in Anagnostopoulos & Zaslavsky (2014).

he main difference of the current paper is our view to extend the

ynamic routing process in immediately collecting high priority bins

aying attention of keeping the humans’ quality of life at high lev-

ls. Conceptually, this means that the main dynamic routing concerns

ave been addressed by previous approaches and, now, we focus on

he models applied in a more advanced concept on WM, i.e., by in-

reasing the quality of life for citizens within the SC.

. System overview

Waste collection is a major counterpart to the environmental pol-

ution (Nam & Pardo, 2012). In the respective literature, waste collec-

ion is treated uniformly regarding city areas. However, real situations

mply the discrimination of city areas according to certain social cri-

eria, such as: (i) sensitivity to pollution due to medical waste (i.e., in

ospitals), (ii) quality of service to a specific population (i.e., in tourist

reas), (iii) prestigious places and buildings within the city (i.e., in the

unicipality town hall), etc. These areas require time critical waste

ollection. In this paper, we introduce a novel approach of discrimi-

ating city areas by incorporating high priority bins to them.

We consider that a SC is divided to a number of sectors si, I = 1,

,…, n. Sectors cover the entire area of the city. In each si, a number of

regular’ bins bj, j = 1, 2,…, m and a certain number of high priority

ins hz, z = 1, 2,…, p are located (Centre of Regional Science, 2015;

riano & Guerra, 2014). In addition, each sector is served by a number

f trucks tl, l = 1, 2,…, q. It holds that the number of high priority bins

n a sector is less than the number of regular bins since high priority

reas are, usually, less than regular areas within a sector.

Each bin, regardless its type, has certain features, such as:

• a static GPS location;



T. Anagnostopoulos et al. / The Journal of Systems and Software 110 (2015) 178–192 181

Fig. 1. The system architecture.
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1 https://github.com/OpenIotOrg/openiot
2 http://lsir.epfl.ch/research/current/gsn/
• RFIDs for bin tagging and identification;
• capacity sensors for measuring the volume of waste;
• actuators for locking the lid of the bin when becomes full;
• a volume capacity of c kilograms to serve waste.

ach collection truck has certain features as follows:

• a dynamic GPS location which changes on the move;
• a volume capacity of C kilograms to collect waste from the bins.

t holds that the capacity of each truck is much more than the capacity

f a bin, thus, C � c.

Waste collection is the process of collecting waste from the bins

nd empties it to the dump outside the SC. We propose four (4) waste

ollection models, which deliver a realization of a waste collection

trategy. Such strategy serves regular or high priority bins, in a daily

asis, susceptible to the restriction that collection is discriminated

ccording to the bin type. Consequently, high priority bins are served

mmediately when they get full (e.g., their capacity status is over a

re-defined threshold to avoid frequent, possibly costly depletions)

nterpolating the truck routing trip between regular bins. The pro-

osed models are dynamic in the sense that they react when changes

n the demand for waste collection are present. For instance, when

ins become full, specific events are triggered in the backend system

nd, accordingly, changes in the trucks routes are imposed in order to

mmediately serve the raised alerts.

The immediate collection, especially for high priority bins, is im-

erative, even though, bins have lids to be locked when they are full.

he reason is that by locking the bins the problem is not solved since

uture waste disposals (that could be realized in short time after lock-

ng) will, probably, contaminate the area near the locked bins. Let

s discuss a specific scenario where the significance of the proposed

odels becomes clear. Imagine a hospital where the corresponding

ins are locked. In this case, future (possibly dangerous) waste dis-

osals (e.g., medical – related material) could heavily affect human

ives. Obviously, when bins are collected once a day, this could possi-

ly cause many problems to patients, employees or visitors. The pro-

osed models minimize the time required for collecting high priority

ins in order to minimize possible negative effects in humans.
.1. System architecture

The architecture of the system is applied to the concept of IoT-

nabled SCs (Vermesan & Friess, 2013; Jin et al., 2014). It is composed

f three layers:

(i) The physical infrastructure.

(ii) The middleware available in the Cloud, and

(iii) The Decision Support System (DSS).

he physical infrastructure contains the devices embedded to bins

nd trucks. Data produced by the IoT components of bins are fused

o a Wireless Sensor Network (WSN) in order to be transferred to the

entral system for further processing. Trucks, apart from the GPS lo-

ation tracking device, are equipped by smart phones used by drivers

or getting routing directions. The Cloud middleware is built on top of

he OpenIoT1. Specifically, WSN data are aggregated from the Global

ensor Networks (GSN)2 which is originated in the lower level of the

penIoT. Consequently, data are cleaned and missing values are im-

uted. Data are stored in a Cloud Data Base (Cloud DB). The DB also

tores GPS location data retrieved by trucks. A dynamic scheduling

odel is responsible to initiate a route when waste in a bin reaches

certain capacity threshold. Accordingly, a dynamic routing model is

riggered to produce the appropriate route for collecting waste, as de-

cribed in Section 4. The DSS is built on top of the architecture and is

esponsible for: (i) sending routing directions to drivers through an An-

roid GUI, and (ii) producing reports and statistics for the municipality

takeholders; thus, enabling online monitoring of the waste collection

rocess. The proposed architecture is presented in Fig. 1.

The main difference, between the static models proposed in the

iterature and the dynamic models proposed in this paper, is the

reatment of waste collection according to the filling rates of the bins.

n Anagnostopoulos et al. (2015b) a dynamic scheduling model for is

resented for the efficient waste collection based on top-k queries.

pecifically, the authors experiment on dynamic vs. static scheduling;

ith regards to waste collection time, for different number of k bins.

https://github.com/OpenIotOrg/openiot
http://lsir.epfl.ch/research/current/gsn/
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Fig. 2. The DTM algorithm.
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The dynamic model is running continuously while the static model is

executed every 24 h. It can be observed that scheduling time varies

w.r.t. the value of top-k bins, thus, the higher the k value, the more

time (i.e., logarithmically) required to initiate a schedule. Note that

the highest scheduling time is reached for the static scheduling; since

in this case, there is no information about the capacity of the collected

bins (i.e., full or half full), thus, leading to a low system performance.

As reported, through simulations, in Anagnostopoulos et al. (2015b),

a significant number of bins become full in 1–12 h. It should be noted

that in Anagnostopoulos et al. (2015b) no high priority bins are con-

sidered and the lower the k is, the greater the filling rate becomes.

In this paper, the proposed models incorporate a dynamic scheduling

approach and continually run during the collection process. It should

be noted that, at first, the initial routing plans are created when the

system is started and accordingly the proposed models are fired to

‘monitor’ and respond to changes in the demand for collection.

4. High priority waste collection models

High priority waste collection involves the immediate response to

alerts related to waste bins located in high priority areas. Such alerts

are triggered when a high priority bin becomes full or its filling rate

is over to a pre-defined threshold. In this paper, we propose a set

of models for the immediate management of high priority bins. The

proposed models are applied after the generation of the routes that

collection trucks should follow to perform the waste collection for

regular bins. This means that our models are responsible to provide

reactions in high priority bins alerts during the collection process.

Hence, in the beginning, the system produces the routes for each col-

lection truck and, accordingly, it initiates (one of) the proposed al-

gorithms (models) to respond with the optimal reaction during the

collection process.

It is worth noting that the proposed models could be easily ex-

tended to be applied in generic waste collection schemes. For in-

stance, routing plans could be re-adjusted during the collection pro-

cess in order to better respond to new needs for waste collection.

When an area is not participating in the initial collection plan and

the need for collection is generated during the execution of the initial

plan, the system, based on the proposed models, could re-adjust the

routing plan in order to serve the new areas. However, in such cases,

the system should be capable of meeting specific constraints related

to trucks load, etc. The initial plans are created by incorporating con-

straints related to e.g., the trucks load. Deviations could make the

trucks become full before the end of the trip and, thus, more changes

in the plans of the fleet are required.

The simplest (baseline) model includes specific collection trucks

devoted to exclusively serve high priority bins. Hence, when an alert

is present, one of the devoted trucks undertakes the responsibil-

ity of serving the specific bin. The remaining models deal with dy-

namic routing and scheduling solutions during the collection time.

With the proposed models, we aim to handle cases where high pri-

ority bins become full during the day and, more specifically, dur-

ing the collection time. We aim to handle cases where we are not

sure in advance when and how high priority waste bins will become

full e.g., cases met in commercial blocks, schools, hospitals, crowded

touristic areas, etc. In other words, we try to cover unexpected

scenarios as far as waste production concerns. In this section, we

analytically present the proposed models and give their details. We

provide a set of solutions and present their advantages and disadvan-

tages. Hence, developers or local authorities, according to the char-

acteristics of each model, can adopt the model that best matches

to a set of pre-defined constraints. In short, the proposed models

are:

• The Dedicated Trucks Model (DTM).
• The Detour Model (DM).
• The Minimum Distance Model (MDM).
• The Reassignment Model (RM).

.1. The dedicated trucks model (DTM)

The DTM is the simplest model for high priority waste bins man-

gement. In this model, we devote specific trucks for serving high pri-

rity bins. The trucks are not assigned to any other collection action.

hen alarms for full high priority bins are triggered, one of the avail-

ble trucks undertakes the responsibility of serving them according

o its capabilities. In the case of a large number of high priority bins

lerts, multiple trucks could be used. It should be noted that the op-

imal number of trucks should be adopted in order to cover the high-

st possible number of high priority bins. The DTM will be adopted

hen local authorities desire immediate responses to high priority

ins alerts without disturbing the remaining collection trucks from

heir initial assignments. The DTM could be the ideal solution when

ocal authorities face a high rate of alerts initiated by high priority

ins. However, when no such alerts are present, the performance of

he model is low. For instance, if just one high priority bin becomes

ull during a day, the algorithm will devote a specific truck for this

in. Even worse, multiple routes could be generated when high prior-

ty bins (having similar locations) produce alerts with low rate during

he day.

The DTM algorithm is depicted in Fig. 2 and results the route r (i.e.,

he ordered set of waste bins to get emptied) of a specific dedicated

ruck. The input of the algorithm is the set of high priority bins hz in

specific area and the available trucks tl (i.e., the trucks devoted to

erve high priority bins – here tl represents the number of trucks de-

oted to high priority bins and not the number of trucks devoted to

specific sector). The output is the route r for a truck devoted to the

ollection of the discussed bins. A route r is a sequence of waste bins

hat a truck should visit. The algorithm, through the adoption of the

outing function (i.e., routing()), utilizes the Dijsktra shortest path to

enerate the initial route for visiting the high priority bins. The vis-

ted() function is adopted to generate the bins that are visited accord-

ng to the route r (this is depicted by the set υ). Finally, when a new

in becomes full (its capacity chz
is over a threshold θ ) during the col-

ection process, the algorithm excludes the visited bins and performs

re-routing process starting over, however, for the remaining bins

depicted by the set difference r − υ).

The time complexity of the DTM is the complexity of the routing()

unction, which is O(hz
2), plus the complexity of the visited() function

hich is O(hz). Hence, the overall complexity is O(hz
2).
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Fig. 3. An allocation example for two trucks.

Fig. 4. The DM algorithm.
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.2. The detour model (DM)

As the DTM does not exhibit good performance when high pri-

rity bins alert are relatively rare, we propose the DM. This model

orces trucks to deviate from their original path in order to first serve

he high priority bins that have already triggered an alert. The rout-

ng function of DM incorporates an initialization function which in-

icates that the routing will start from the location of a specified

igh priority bin. Each collection truck is responsible to change its

oot to serve the wider area where high priority bins are located. For

nstance, let us consider that the original allocation for two trucks

1, T2, is two sub-areas, A1, A2 for each truck respectively Fig. 3. If

n alarm is triggered by a high priority bin located in A1, the first

ruck, T1, will interrupt its route, it will serve the bin and, accordingly

t will continue with the remaining bins. The DM aims to have the

rucks devoted to specific sub-areas. Every bin inside each area will

e served by the corresponding truck. However, the model exhibits

ow performance when the truck, which is responsible for high pri-

rity bin, is located in a distant place related to the location of the

in. In such cases, there is the risk of producing continuous spatial

eviations from the original path which could lead to increased route

istances and fuel consumption.

The proposed DM algorithm is depicted in Fig. 4 and results the

oute of a specific truck. The input of the algorithm is the set of high

riority bins hz in a specific sub-area, the set of ‘regular’ bins bj and

he available trucks tl. The output is related to the route r for a truck

erving the specific area. The algorithm, through the adoption of the

outing function (i.e., routing()), utilizes the Dijsktra shortest path to
enerate the initial route for visiting the ‘regular’ bins. The visited()

unction is adopted to generate the bins that are visited according to

he path r (this is depicted by the set υ). When a high priority bin be-

omes full (its capacity chz
is over a threshold θ ) during the collection

rocess, the algorithm excludes the visited bins and performs a re-

outing process. However, the route, with the help of the init() func-

ion, starts from the full high priority bin generating the alert and the

emaining bins (depicted by the set r − υ) follow.

The time complexity of the DM is the complexity of the routing()

unction, which is O(bj
2), plus the complexity of the visited() func-

ion, which is O(bj), and the complexity of the init() function which is

(hz). Hence, the overall complexity is O(bj
2) since bj > hz.

.3. The minimum distance model (MDM)

The above described models, DTM and DM, have specific disad-

antages related to the reduced truck load and the possibility of mul-

iple deviations from the initial route, respectively. We propose an ad-

itional model, the MDM, which tries to reduce the risk of deviations

iolating the initial assignments as produced by the system. In the

DM, when an alert is triggered by a high priority bin, the truck hav-

ng the minimum distance with the bin is assigned to serve it. Specif-

cally, the MDM incorporates a nearest function, which indicates that

outing process and selects the truck with the nearest location to the

ocation of the specified high priority bin. An initialization function

s also incorporated in the routing function of the MDM. With this

odel, we try to minimize the effort for each truck accompanied by

n on-time service for high priority bins. Actually, we try to imme-

iately serve high priority bins mainly located in the borders of the

nitial allocated sub-areas. The model minimizes the risk of deviation

rom the original routes, however, it is affected by the distribution of

he produced alerts.

The MDM algorithm is presented in Fig. 5. The inputs of the al-

orithm are the sets of regular, high priority bins and the available

rucks. The output is the route for each truck. Initially, the algorithm

enerates the route of each truck based on the function routing() and

efines the visited bins with the help of the function visited() (set

l). When a high priority bin becomes full (its capacity chz
is over

threshold θ ) during the collection process, the algorithm, through

he adoption of the function nearest(), finds the nearest truck f to the

pecific bin and performs a re-routing process for the specific truck.

n the re-routing process, the algorithm excludes the already visited

ins (let rf - υ f be the set of the visited bins) and gives priority (starts

he route) from the high priority bin through the use of the function

nit().

The time complexity of the MDM is the complexity of the routing()

unction, which is O(bj
2), plus the complexity of the visited() function,

hich is O(bj), the complexity of the init() function which is O(hz),

nd the complexity of the nearest() function which is O(hz). Hence,

he overall complexity is O(bj
2) since bj > hz.

.4. The reassignment model (RM)

The last model, the RM, tries to cover the disadvantages of the re-

aining models and is related to the re-allocation of the sub-areas

hen an alert arrives to the system. The system takes into considera-

ion the current location of trucks and pays attention on the high pri-

rity bins. Specifically, the RM incorporates a reassignment function

hich reassigns the bins of sub-areas to the trucks’ current locations.

ccordingly, a nearest location function denotes that routing will se-

ect the truck with the nearest location to the location of the specified

igh priority bin. An initialization function is also incorporated in the

outing function of the RM. With this model, we aim to have an up-

o-date allocation of the entire area in order to maximize the perfor-

ance. It should be noted that the re-allocation could result totally

ifferent sub-areas compared to the initial produced; however, these
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Fig. 5. The MDM algorithm.

Fig. 6. The RM algorithm.
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results will be fully aligned with the current needs (i.e., alerts defined

by high priority bins) and the current location of the trucks. In the re-

allocation process, high priority bins are considered in a first served

method. Hence, the new routes start with the high priority bins and

the rest of the bins follow.

In Fig. 6, we present the proposed RM algorithm. The inputs of the

algorithm are the sets of regular, high priority bins and the available

trucks. The output is the route for each truck. Initially, the algorithm

generates the route of each truck based on the function routing() and

defines the visited bins with the help of the function visited() (set

υ l). When a high priority bin becomes full (its capacity chz
is over

a threshold θ ), during the collection process, the algorithm, through

the adoption of the reassignment() function creates the new sets of

bins (i.e., {αl}) devoted to each truck. In these sets, the already visited

bins are excluded (i.e., the set rl - υ l). Accordingly, the algorithm finds

the nearest truck to the high priority bin produced an alert, through

the adoption of the nearest() function and the nearest truck f starts its

route from the bin hz (i.e., the high priority bin produced an alert). In

the re-routing process for truck f, the algorithm excludes the already

visited bins (let rf - υ f be the set of the unvisited bins).

In the RM model, the algorithm which performs dynamic re-

routing is based on the reassignment algorithm described in Lim et al.

(2005) and the dynamic routing discussed in Anagnostopoulos et al.

(2015a). The algorithm presented in Lim et al. (2005) is an efficient

graph partitioning algorithm based on an implementation of k-Means

clustering. Specifically, the algorithm is fed up with the set of the re-

maining bins to be emptied and the available trucks. The locations of

the remaining bins are considered to be the clustering data while the

trucks’ locations are the number of cluster centers. The output of the

algorithm is the reassignment of the cluster data (i.e., bins) to cer-
ain cluster centers (i.e., trucks). Both, cluster data and cluster centers

orm certain clusters which are used by the routing() function.

The time complexity of the RM is the complexity of the routing()

unction which is O(bj
2) plus the complexity of the visited() function

hich is O(bj), the complexity of the init() function which is O(hz),

he complexity of the nearest() function which is O(hz) and that of the

eassignment() function which is O(bj
2). Hence, the overall complexity

s O(bj
2) since bj > hz.

. Application perspectives

A WMS typically refers to a specific technique, strategy, or soft-

are adopted to manage waste materials. This may include the de-

ign of the collection, transportation, recycling, disposal, processing

f waste as well as the implementation of such activities. An impor-

ant part of a WMS is the DSS that mainly concerns scheduling activ-

ties. The DSS is responsible to provide schedules for the collection of

aste based on a number of criteria. It provides an interface for fleet

anagement and it takes into consideration spatio-temporal charac-

eristics as well as the contextual information of the area under con-

ideration. The DSS realizes the strategy of the local authorities and

elevant stakeholders.



T. Anagnostopoulos et al. / The Journal of Systems and Software 110 (2015) 178–192 185

a

6

D

p

t

r

m

a

t

A

v

f

t

a

w

i

p

l

r

c

m

t

i

t

p

T

m

a

6

o

i

c

q

c

n

f

r

w

p

t

l

o

a

o

d

fi

t

m

3 Real allocation distribution of bins within the city of Saint Petersburg. http://

wikimapia.org/, [Accessed on: March 9, 2015].
The proposed models could be part of a DSS in the following

spects:

• A DSS could be based on a set (pool) of algorithms that perform

dynamic adaptation over specific criteria. In the case of high pri-

ority areas, the local authorities could define the criteria e.g., cost,

distance, response time and the DSS could automatically adopt

one of the available models. Our models could be part of the dis-

cussed pool. Hence, an intelligent mechanism for selecting the ap-

propriate model for waste collection could be built on top of the

discussed algorithms.
• According to the adopted strategy, local authorities could char-

acterize specific areas as high priority and ‘force’ the system to

serve them immediately. This could be done no matter the type

of waste (e.g., dangerous materials). For instance, local authorities

could select a specific type of waste to be immediately collected

to maximize the revenue from recycling. The areas where the spe-

cific waste type is mainly disposed (this could be derived by rele-

vant studies) could be defined as high priority areas.
• The proposed models could be adopted by a DSS to manage the

trade-off between the immediate collection of high priority bins

and the collection costs which are the time spent, the fuel con-

sumed and the distance covered by trucks. The DSS could auto-

matically select the model that perfectly matches to pre-defined

criteria that are subject to frequent changes. Hence, the WMS

could be fully aligned to spatio-temporal criteria. Imagine touris-

tic areas where a large amount of waste is observed only for spe-

cific periods (seasonality aspect). Such areas could be character-

ized as high priority only for the periods where they are crowded.
• The proposed models could be combined with a classification

module that processes the available information and will derive

classifications for multiple waste types. Hence, the local authori-

ties will be capable of characterizing multiple high priority areas

according to the type of waste. The DSS could apply different algo-

rithms for different waste type and, thus, to be fully aligned with

the underlying ‘waste dynamics’ of the SC.

. Experimental evaluation

We elaborate on the performance of the proposed models i.e.,

TM, DM, MDM, RM. Through a set of simulations, we evaluate the

erformance of each model concerning important metrics that affect

he performance of WMSs. We evaluate the proposed models for met-

ics not only related to the required computational time but also for

etrics related to the economic viability of a WMS. The economic vi-

bility of a WMS depends on issues like the distance covered by the

rucks as well as the required fuels and the time spent in travelling.

number of experimental scenarios are adopted to reveal the ad-

antages and disadvantages of each model. Our simulations are per-

ormed for a dataset retrieved for the city of Saint Petersburg, Russia.

The proposed system could be the basis for maximizing the Re-

urn of Investment (RoI) from parties involved in the WM chain. There

re specific axes through which the RoI could be maximized when

e apply the proposed system in a SC. The first is the cost reduction

n the waste collection scheme. The proposed models aim to the ap-

ropriate management of resources required to the WM and, thus,

ocal authorities taste fuel cost reduction through the optimization of

outes (unnecessary transports are minimized). In addition, the effi-

ient management of the collected waste is capable of increasing the

aterial recovery and recycling. When combined with recycling sys-

ems will increase the amount of recycled waste with obvious pos-

tive impacts in the economic growth of the SC. The percentage of

he recycled waste will be maximized accompanied by the economic

rosperity of the local societies and the corresponding companies.

he above discussed issues are some of the positive impacts that our
odels have. However, a detailed analysis on the RoI of a waste man-

gement system is beyond the scope of this paper.

.1. Performance metrics and simulation setup

We adopt a set of metrics capable of revealing the performance

f each model by evaluating quantitative and qualitative character-

stics. Quantitative characteristics are related to the quantity of the

ollected waste, the distance traveled from bins to dumps and the re-

uired fuel for delivering the collected waste to dumps. Qualitative

haracteristics are related to the CPU time required to derive the fi-

al routes and the routing time. The list of the adopted metrics is as

ollows:

• CPU Elapsed Time (CET). The CET metric represents the required

time (in seconds) for deriving the final collection result for each

model. CET exhibits the time devoted to the definition of the final

routes for each truck before the proposed framework’s result is

applied into the waste collection. The lower the CET is, the better

the performance becomes. The reason is that when CET is low, the

proposed system does not devote much time to result the final

collection route.
• Collected Load (CL). The CL metric depicts the collected volume of

waste (in kilograms) that is transported to dumps. The aim is to

have high values for the CL metric in order to exploit the entire

volume that trucks can transport. In our results, we consider the

average CL per truck.
• Distance (D). The D metric measures the trajectory covered (in

kilometers) by trucks for delivering waste into the dumps. The aim

is to minimize the D metric in order to have a system that results

routes involving the shortest paths. In our results, we consider the

average D per truck.
• Routing Time (RT). The RT metric represents the time required (in

minutes) that trucks need to visit waste bins, perform the collec-

tion plan and deliver waste in to the dumps. The RT is not only af-

fected by the D metric but also by qualitative characteristics such

as the time required for the actual collection in each bin and the

traffic on road network in rush hours.
• Response Time (R). The R metric represents the average time that

a truck needs to serve high priority bins. The R metric should

be low because we aim at delivering a system that immediately

serves high priority bins in order to minimize waste consequences

in human lives.
• Fuel Quantity (FQ). The FQ metric measures the quantity of fuel

(in liters) consumed during the specified routing trips. The FQ de-

picts the actual economic consequences of each model that finally

affects the viability of the proposed waste management system.

The aim is to have low values for FQ since this implies economic

scaling.

The proposed models were evaluated with real and synthetic data

etrieved by the municipality of Saint Petersburg, Russia3. In Fig. 7,

e present a real allocation distribution of bins within the munici-

ality. More specifically, the municipality is divided into certain sec-

ors. In Saint Petersburg, for each sector a certain number of regu-

ar and high priority bins are assigned as well as a certain number

f trucks. This separation is a decision of the Saint Petersburg local

uthorities for better handling the available waste bins and the fleet

f trucks. It should be noted that multiple collection trucks could be

evoted to each sector. Each bin as well as each truck has a specific

xed capacity. Table 1 shows more details on the adopted setting for

he performance evaluation of the proposed models. In our experi-

ents, we also consider variable n in order to show the performance

http://wikimapia.org/
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Fig. 7. Distribution of bins (high priority bins are with black) within the municipality

of Saint Petersburg, Russia.

Table 1

Simulation parameters and their values.

Parameter Description Value

n The number of sectors 10

m The number of regular bins 250

p The number of high priority bins 50

q The number of trucks in each sector 6

c The volume capacity of each bin 100 kg

C The volume capacity of each truck 4000 kg

Fig. 8. Results for the CET metric (seconds).

Fig. 9. Results for the CL metric (kilograms).

Table 2

Results for the D metric (kilometers).

Sectors DTM DM MDM RM

1 18.7601 20 18.1074 15.8042

2 18.4904 20 17.5486 15.9508

3 18.0401 19 18.0812 16.5253

4 17.8976 19 17.6272 16.6491

5 18.2744 19 17.3739 16.1378

6 18.5684 19 17.6719 15.2865

7 18.5825 20 18.3960 16.3541

8 17.7156 20 17.5711 15.7203

9 17.9232 20 18.0638 16.1230

10 18.3599 20 18.1279 17.0431
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of our models when sectors number increase. It should be noted that

the number of trucks, in total, remains the same which means that

for high n leads to low number of trucks per sector.

We evaluate the proposed models for a period of 30 days (simu-

lation time). Dynamic scheduling is based on the Anagnostopoulos

et al. (2015a) while dynamic routing is achieved with DTM, DM,

MDM, and RM models. Specifically, the models are running contin-

uously within that period. A dynamic routing is initialized when a

certain threshold of bins is reached based on the dynamic schedul-

ing. The models served, on average, a range of 1–7 alerts per sector

for dynamic routing and per 24 h. This is natural since some areas are

of high priority, thus, require immediate waste collection than the

regular areas.

6.2. Performance assessment

Our results for the CET metric are presented in Fig. 8. We observe

that the DTM achieves high performance while the RM is the less ef-
ective. This is explained since the complexity of the DTM is less than

he complexity of the RM. The DTM in contrast to the RM does not

ontain: (i) a reassignment function, and (ii) a nearest function. The

TM exhibits higher performance than the MDM, as it does not in-

olve a nearest function. Finally, the DTM is more efficient compared

o the DM, because in contrast to the DM the routing function does

ot contain an initialization stage.

The CL results for the proposed models are presented in Fig. 9. We

an observe that the DTM is less efficient than the remaining models.

his is natural since the DTM allocates certain trucks for collecting

aste only from the high priority bins. However, the DM, the MDM

nd The RM allocate the available trucks to collect waste from both

egular and high priority bins, thus, exploiting the entire volume ca-

acity of trucks.

Our results for the D metric are presented in Table 2. We can ob-

erve that the RM is the most efficient model compared to the re-

aining models. Since the RM incorporates the reassignment func-

ion which reallocates routing paths to trucks, the model assigns the

nserved bins to the nearest trucks. In the RM, the trajectory covered

y trucks for delivering waste into the dumps, after the reassignment

unction, is minimal, compared to the remaining models. The DM is

ess efficient since it performs a detour process which leads to max-

mum trajectories. The MDM exhibits lower performance compared

o the rest models and especially to the RM. The MDM calculates the

inimum distance between trucks and high priority bins, however,

t does not perform any reassignment. Recall that in the MDM, each

igh priority bin is assigned to the closest collection truck. The DTM

erforms worse than the MDM, since no calculation of the minimum

istance is performed between trucks and high priority bins. It should

e noted that our results for the D metric concern the average dis-

ance covered by trucks. The D results cannot be judged as low as

e consider that each sector covers an area of 25 square kilometers.
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Fig. 10. Results for the RT metric (minutes).

Fig. 11. Results for the FQ metric (litters).
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Fig. 12. Performance of the proposed models for P = 25% (D metric).

Fig. 13. Performance of the proposed models for P = 25% (RT metric).
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pecifically each of the trucks travels 15.8 km on average which is

sufficient distance for the specified sectors. The bins collected per

ruck route are in the range of 1–50 regular bins and 1–10 high pri-

rity bins. The range of dynamic routes per day is 1–7 adopting the

ynamic scheduling.

Our models are also evaluated concerning the RT metric. The RT

esults are shownin Fig. 10. The RM performs better than the remain-

ng models. The reason is that the RM derives the lowest D value. In

onstrast, low D bounds the RT to low values. The DM also exhibits

ow performance since it has the highest D results. It should be noted

hat high D leads the RT to high values as well. The DTM and the MDM

ave similar performance concerning the RT metric, although, they

xhibit slightly different D values. The RT metric is not only affected

y D but also by qualitative characteristics which have high impact in

he RT results. Such qualitative characteristics could be the time re-

uired for the actual waste collection and the traffic on road network

n rush hours.

Our results concerning the FQ metric are presented in Fig. 11. The

M achieves high perfrormance since the FQ is highly correlated with

and RT metrics. In the RM results, we observe low values for D and

T which, in turn, implies low FQ. The DM has the worst performance

ompared to the remaining models. The reason is that the DM results

igh D and RT results and, thus, the trucks travel in long distances be-

ore they are capable of delivering the collected waste into the dumps.

he DTM and the MDM exhibit similar FQ results. However, the MDM

s slightly better than the DTM due to the low D results.
We report on the performance of the proposed models for various

cenarios concerning the number of high priority bins. Let us denote

ith P the percentage of high priority bins over the entire set of the

vailable bins. Recall that the number of the available bins in the city

f Saint Petersburg is equal to 3000. Hence, when p = 50% means

hat half of the available bins are considered as high priority. With

his simulation setup, we try to reveal the performance of the models

hen the system faces variable high priority bins number. Addition-

lly, we experiment with θ = 0.8. Recall that θ represents the thresh-

ld over which a bin is considered as full. In Fig. 12, we present our

esults concerning the D metric and p = 25%. As n increases, the dis-

ance covered by the trucks decreases. This stands for the entire set of

he proposed models. The reason is that as n increases, the area that

ach sector covers decreases and, thus, a low distance is required for

he collection trucks. The RM exhibits the best performance amongst

he proposed models followed by the MDM and the DTM. These re-

ults are related to the scenario where θ = 0.8. In Fig. 13, we see

ur results for the RT metric (p = 25%). In this experimental setting,

he RM exhibits the best performance. The increased n leads to a de-

reased RT as collection trucks have to cover lower distance compared

o scenarios involving low n. In Fig. 14, we present our results for the

metric and for the same experimental scenario (p = 25%). In this

ase, the DM has slightly better performance than the RM. The DM

eads to 4% (approximately) less time than the RM in order to serve

igh priority bins. The worst performance is observed by the MDM.
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Fig. 14. Performance of the proposed models for p = 25% (R metric).

Fig. 15. Performance of the proposed models for p = 50% (D metric).

Fig. 16. Performance of the proposed models for p = 50% (RT metric).

Fig. 17. Performance of the proposed models for p = 50% (R metric).

Fig. 18. Performance of the proposed models for p = 5% and different q (D metric).
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We also perform a set of experiments for p = 50%. In this exper-

imental scenario, we assume that half of the available bins are con-

sidered as high priority. In Fig. 15, we see that the lowest distance

is covered by the RM and the DTM. When n → 30, the DTM exhibits

better performance than the remaining models. The DTM seems to be

the appropriate model when the area under consideration includes a

high percentage of high priority bins. In such cases, it is the best for

local authorities to devote specific collection trucks for covering high

priority bins. The worst performance is exhibited by the MDM as the

model results an increased number of changes in the route of each

collection truck. In Fig. 16, we confirm that the RM requires less rout-

ing time compared to the remaining models while the MDM exhibits

the worst performance. As far as the R metric concerns, our results

depicted in Fig. 17 show that the DTM is the best model if local au-

thorities want to achieve limited time for serving high priority bins.

Recall that we assume an area with a high number of high priority

bins. In such cases, the RM results the lowest routing time, however,

the model is not appropriate to immediately serve high priority bins.

Finally, the R decreases as n increases. The reason is that a high num-

ber of sectors lead to small areas that should be served by the col-

lection trucks. However, in such cases, the trucks should cover a low

number of bins.

We perform additional experiments for different values of q and

C. The aim is to reveal the performance of the proposed models when
he number of trucks in each sector and their capacity change. In ex-

eriments, we get q ∈ {4, 6, 10, 20}, C ∈ {2000, 3000, 4000, 5000} (Kg)

nd p ∈ {5%, 50%} while keeping n = 10. We report on the D, RT and R

esults.

In Figs 18, 19 and 20, we see our results for p = 5% and different

. In general, the proposed models result similar D values (Fig. 18).
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Fig. 19. Performance of the proposed models for p = 5% and different q (RT metric).

Fig. 20. Performance of the proposed models for p = 5% and different q (R metric).

A

r

t

n

t

D

q

w

T

t

t

t

i

p

m

a

r

s

m

w

d

b

e

Fig. 21. Performance of the proposed models for p = 50% and different q (D metric).

Fig. 22. Performance of the proposed models for p = 50% and different q (RT metric).

Fig. 23. Performance of the proposed models for p = 50% and different q (R metric).
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t

s the number of trucks increases, the distance that they cover, natu-

ally, decreases. We observe similar decrease in the routing (RT) and

he response time (R) (Figs 19, 20). Multiple trucks could easily serve

ot only high priority bins but also regular bins. In such cases, the

rucks devote low time for routing. The RM exhibits the best and the

M exhibits the worst performance for both, the RT and the R metrics.

In Figs 21, 22 and 23, we see our results for p = 50% and different

. In this scenario, the proposed models cover high distances (Fig. 21)

hen q → 4 compared to the experimental scenario where p = 5%.

his is reasonable, as in the scenario where p = 50%, the available

rucks are limited and, thus, they should cover high distances to serve

he high number of high priority bins. These results mainly stand for

he DM and the MDM. Concerning the RT metric (Fig. 22), we get sim-

lar results as in the scenario where p = 5%. However, now, the worst

erformance is exhibited by the MDM instead of the DM. The RM re-

ains the model with the best performance. Moreover, we observe

dditional differences in the performance of the proposed models

elated to the R metric with the previously discussed experimental

cenario (p = 5%). When p = 50%, the DTM exhibits the best perfor-

ance concerning the R metric (Fig. 23) and the RM the worst. Now,

e have a high number of high priority bins that should be imme-

iately served. The DTM devoting specific trucks to the high priority

ins is the model that should selected in such cases as it is the model

xhibiting the lowest response time.
In Figs 24, 25 and 26, we depict our results for different C (C ∈
2000, 3000, 4000, 5000}) and p = 5%. We aim to present the per-

ormance of the proposed models when the capacity of the avail-

ble trucks changes. Concerning the D metric, the proposed mod-

ls exhibit similar performance, however, the distance increases as

he capacity increases. The reason is that each truck when it has an
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Fig. 24. Performance of the proposed models for p = 5% and different C (D metric).

Fig. 25. Performance of the proposed models for p = 5% and different C (RT metric).

Fig. 26. Performance of the proposed models for p = 5% and different C (R metric).

Fig. 27. Performance of the proposed models for p = 50% and different C (D metric).

Fig. 28. Performance of the proposed models for p = 50% and different C (RT metric).

Table 3

Models performance.

Model Metric

CET CL D RT R FQ

DTM Low Low Medium Medium Low Medium

DM High High High Medium Medium High

MDM High High Medium Medium Medium High

RM High High Low Low Medium Low

p

C

r

m

t

t

F

h

b

s

m

o

s

increased capacity can collect more waste before it is ready to be

guided in the disposal area. The routing time (RT metric) also in-

creases as C → 5000. This is reasonable as the distance increases and

each truck spends more time for the collection process. The best per-

formance is observed for the RM while the worst performance is ob-

served for the DM. Similar results can be seen for the R metric.
In addition, we get p = 50% to simulate a high number of high

riority bins. In Figs 24, 25 and 26, we depict our results for different

. The RM and the DM exhibit the lowest and the highest distance,

espectively (Fig. 24). In Fig. 25, we observe that the RM remains the

odel with the best performance and the MDM is the model with

he worst. These results stand for the RT metric. Moreover, concerning

he metric R, we confirm the results depicted in Fig. 23. As we see in

ig. 26, the DTM exhibits the lowest response time while the RM the

ighest. These results indicate that when the number of high priority

ins is large, the public authorities should devote specific trucks to

erve high priority areas / bins (Figs. 27, 28, and 29.)

Finally, in Tables 3 and 4, we summarize the cases where each

odel performs well. The tables are provided in order to help devel-

pers and stakeholders to choose between the proposed models. It

hould be noted that in Table 3, we get the average case retrieved by
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Table 4

Performance domains.

Model Dedicated trucks per bins Type Dedicated trucks per Sector Same sector support Cross sector support Re-assignment support

DTM
√ √ √

DM
√ √

MDM
√ √ √

RM
√ √ √

Fig. 29. Performance of the proposed models for p = 50% and different C (R metric).
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he entire set of our experiments and classify the performance in the

et {Low, Medium, High}.

. Conclusions and future work

The immediate collection of waste from high priority bins is a

hallenging problem in modern societies. The reason is that, nowa-

ays, due to the increased population accompanied by the indus-

rial development, the probability of exposing dangerous waste to

itizens is increased as well. Especially, in the cases where waste is

angerous for human lives or for specific parts of the population, the

eed for the immediate collection is imperative. We propose a set

f models for alleviating the discussed problem. The proposed mod-

ls deal with specific strategies for serving high priority bins. All of

hem aim to cover specific aspects of the problem. Local authorities

r stakeholders could adopt a model to be applied in real scenar-

os. A high number of simulations reveal the advantages and disad-

antages of the proposed models. We report on the performance of

ach model for a wide set of metrics. These metrics deal with quan-

itative as well as qualitative characteristics of a waste management

ystem.

In the first places of our future research agenda is the definition

f an intelligent mechanism for the management of historical data

elated to the load of high priority bins. Hence, our system will be

apable of providing pro-active responses in the demand for collect-

ng waste from high priority bins. Pro-active responses will increase

he efficiency of the system as they will be the basis of building novel

outing algorithms that incorporate such knowledge in their results.

or instance, spatio-temporal data combined with bins load histori-

al data will give us the opportunity to derive routes that, in specific

ours of the day and for specific sectors of the city, will give prior-

ty to the discussed bins. Finally, a dynamic re-allocation of routes

ccording to the load of each truck will be another extension of our

ork. Through this approach, borders between sectors will be elim-

nated and, if necessary, trucks will undertake the responsibility of

ollecting waste in their ‘neighbors’.
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