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Abstract. Recently, we have been witnessing how various social applications and networking services are being integrated more
deeply into our daily lives. Until now, social interaction has been attributed exclusively to humans, while resources and the
smart space have supported interaction as passive mediators only. However, the involvement of smart spaces as an active actor
in the interaction process facilitates more flexible and user-centered applications for users. This article explores how knowledge-
based technologies enable smart spaces to actively take part in the interaction. We argue that smart spaces should be able not
only to adapt their behaviour according to the actions of humans and other participants, but also initiate interaction when it
is necessary. In order to support this statement, we categorise the types of interaction from the participants’ perspective, and
review and evaluate the technologies enabling interaction in smart spaces. Furthermore, we present our constructive research
on interaction in smart spaces: proof-of-concept prototype applications realizing different architectures and supporting various
types of interaction in smart spaces.
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1. Introduction

Social interaction is vital for humans, for their well-
being, productivity, and health [10]. Computer tech-
nologies support our social interaction by offering
hardware infrastructure and social applications. Mo-
bile phones, tablets, and other mobile devices have rich
communication facilities and allow users to be con-
tinuously available and use different social services
like social networks (Facebook), geospatial applica-
tions (Foursquare), and games (Gbanga), to name only
a few. This kind of mobile software has been coined
as Mobile Social Software (MoSoSo) and defined as
software supporting social interaction among intercon-
nected individuals [27]. However, MoSoSo does not
achieve the full involvement of the surrounding phys-
ical space as an active actor in the social interaction,
even though this would allow more flexible and user-
centered services for users.

In order to involve the surrounding physical space
in social interaction, the space should possess the same
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kind of interaction capabilities as humans have. That
is, changing a space’s role from a mediator to an ac-
tive actor requires perception, cognitive, and acting ca-
pabilities. Research on smart environments provides a
good basis for enriching physical spaces with compu-
tational facilities in such a way that the space is able
to acquire information about the events in the space,
define meanings for the events, and react accordingly
[20,29]. Such environments are called smart spaces.
Does this mean that smart spaces can take part in so-
cial interaction, support and affect it? Can smart spaces
become participants in social interaction and to which
extent? We raise these questions with this article.

Traditionally, social interaction is considered from
humans’ perspective, meaning that social interaction
happens only when human beings are involved. How-
ever, there are many other interesting forms of inter-
action in smart spaces. In this article, we define smart
space interaction as the sequence of bidirectional in-
teractions between actors (or a group of actors) which
take into account context, including the actions and be-
haviour of these actors. Actors in such interaction are
independent entities, able to sense and receive infor-
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mation, act on their own, and communicate with each
other through the environment (e.g. air, wireless net-
works, etc.). Moreover, we emphasize an active role
in such interaction. This means that actors can initi-
ate the interaction towards others. Here, the interacting
actors can be humans or computers. One actor can be
human and the other the computer, resembling human-
computer interaction (HCI). However, smart space in-
teraction is more than HCI as a computer is an active
actor in the interaction instead of a mediator. Both ac-
tors can even be computers. In such a case, the main
difference to plain machine-to-machine (M2M) com-
munication is that the actors are considered as inde-
pendent entities, able to make decisions on their own.

Generally, interacting actors perform the following
actions: observing the overall interaction environment,
other participants, and the situation; interpreting the
meanings of these observations; reasoning about them;
and performing corresponding actions. Behaviour of
interacting peers is affected by others. Moreover, this
interaction does not progress in isolation: the environ-
mental properties, overall situation, and personal and
social factors (social roles, for example) of participants
affect it. We consider a smart space as an active inter-
action actor. This means that a smart space can initi-
ate the interaction and humans can perform interaction
with the smart space (i.e. humans perceive the social
interaction to occur with the smart space).

We define the following key properties for inter-
action in the smart space: 1) interaction in the smart
space is bidirectional interaction, which means that
it happens towards both participants; 2) participants
adapt their behaviour to the actions of other partici-
pants and the situation context (i.e. all information rel-
evant to interaction). This situation context consists of
several elements: the physical context, which describes
the environment where the interaction occurs; the com-
putational context, describing the computational facil-
ities of the environment; the personal context depict-
ing the information about peer, including own knowl-
edge and experience (i.e. memory); and the social con-
text, which describes the relationship properties the
peer might have with other participants and social laws
and norms. The social context is the ultimate feature
that distinguishes social interaction from other types of
interaction.

Semantics is very important for interaction in smart
spaces. In other words, interaction in smart spaces is
based on giving a meaning to situations and acting ac-
cording to this meaning. This process of capturing the
overall situation context, interpreting it and acting ac-

cordingly is natural for humans, but how can comput-
ers (as active interaction actors) do this?

Knowledge-based systems [21] offer the necessary
means to support these tasks. Knowledge-based sys-
tems provide 1) means to operate with all different ob-
jects of the system with unified semantics; 2) flexible
solutions to define actions to take according to the sit-
uation; 3) inference algorithms to make decisions effi-
ciently.

In this article, we explore how knowledge-based
technologies support building smart spaces that are
active actors in the interaction. Our hypothesis is
that knowledge-based technologies supported by dis-
tributed mechanisms provide an efficient and flexi-
ble solution for facilitating smart space interaction;
specifically to achieve an active role for the smart
space in such interaction.

Following sections are drawn towards verifying the
outlined hypothesis by utilizing a constructive research
approach [28]. Based on theoretical studies, the smart
space interaction concepts are introduced, followed by
verification through prototypes and their evaluation.

The contribution of the article is the following: First,
we distinguish the types of interaction in smart spaces
from participators’ point of view. Second, we explore
the technologies necessary to facilitate and support
the interaction in smart spaces and with smart spaces.
Third, we present our work towards knowledge-based
technologies supporting smart space interaction.

The rest of the article is organised as follows: Sec-
tion 2 outlines related work. We discuss the basics of
smart space interaction in Section 3. Section 4 explains
the connection between context-awareness and smart
space interaction. Section 5 presents the technologies
required to achieve interaction in smart spaces. An
overview and an analysis of our prototypes are pre-
sented in Section 6. Finally, we discuss the findings in
Section 7.

2. Related work

Considerable research and development effort has
been made to support user interaction. Plenty of tech-
nologies and framework solutions can be used to sim-
plify the development of such systems. In this litera-
ture review, we explore prominent approaches, tech-
nologies, and applications for supporting interaction in
smart spaces.

Applications supporting social interaction nowa-
days attract significant commercial and research inter-



E. Gilman et al. / Towards interactive smart spaces 7

est. Social networks (Facebook), virtual worlds (Sec-
ond Life1), etc. allow people to be in contact and
share their social context. These applications provide
mediated social interaction among users. With recent
advances in mobile technologies, mobile devices are
increasingly becoming associated with their owners.
This is because of their constant availability for users,
connectivity and computational facilities. Hence, mo-
bile devices are an attractive platform for development
of social and smart space applications.

Equipping mobile devices with sensing technolo-
gies enhances context-based social interaction. For
instance, location-based social applications utilize
location context obtained from GPS sensors (e.g.
Foursquare2). Proximity of users can be sensed with
Bluetooth [16], the activity context can be recognized
from the accelerometer sensor, etc. Moreover, by mon-
itoring and analyzing sensor data, mobile phones al-
low exploration of the real social relations users have,
instead of relations reported by the users [17]. Obvi-
ously, social mobile applications would benefit from a
platform which allows utilizing the mobile phone con-
text [37]. Also Toninelli et al. [57] suggest such mid-
dleware to manage mobile social ecosystems.

Besides providing context information, embedded
sensors offer another usage scenario. They can be used
as components of multimodal interfaces that enable
users to interact with applications using, for example,
gestures or voice commands. These interfaces are used
both to interact with a mobile phone (e.g. Apple Siri3)
and even use the mobile phone as a tool to interact with
other objects in the environment [34]. NFC4 opens up
facilities to connect physical everyday objects lacking
computational facilities to the digital world. For in-
stance, Broll et al. [8] demonstrate physical mobile in-
teraction with tagged objects on a wall poster by touch-
ing them with a mobile phone equipped with the NFC
reader. Multimodal interaction is also utilized in game
industry (e.g. Kinect5).

Smart spaces exploit sensor technologies and infras-
tructure to support users in their daily activities; how-
ever, supporting social interaction has not yet been
studied much. Lifton et al. [26] study the bridging of

1http://secondlife.com/ (accessed June 2012)
2https://foursquare.com/ (accessed June 2012)
3http://www.apple.com/iphone/features/siri.html (accessed June

2012)
4NFC is a short-range wireless communication technology which

allows reading passive RFID tags and exchanging information be-
tween two NFC-enabled phones.

5http://www.xbox.com/en-GB/Kinect (accessed June 2012)

physical and virtual environments via embedded and
actuator networks. Philipose et al. [33] infer users’ ac-
tivities from the objects they interact with by utiliz-
ing RFID technology to track user interactions with
objects. Wang et al. [63] recognize multi-user activi-
ties using a multimodal, wearable sensor platform to
capture observations of both users and their interac-
tions. Coupled Hidden Markov Models (CHMMs) are
used to model user interactions and recognize multi-
user activities. Cook et al. [11] study the detection and
understanding of social interaction in smart spaces by
collecting data from multiple sensors of the environ-
ment, such as motion sensors, light and temperature
sensors, contact switches to monitor the usage of the
main key items, such as a cooking pot, etc. Oliver et al.
[31] present a real-time computer vision and machine
learning system for modelling and recognizing human
behaviour in a visual surveillance task. They employ
HMMs and CHMMs for modelling behaviour and in-
teractions. Chen et al. [9] also use a camera-based sys-
tem to discover social interaction in real work environ-
ments by tracking the location of people and their head
positions in the office.

Another important question is how the interaction
can be facilitated. Different types of interaction have
different challenges. For instance, embedding interac-
tion facilities in physical artefacts rises many chal-
lenges, like the invisibility dilemma, which describes
the difficulty to announce to users the interaction fa-
cilities of artefacts (so that the user can interact with
the object) while preserving the artefacts’ functional-
ity and outlook as much as possible [25]. Riekki et al.
[41] and Hang et al. [19] employ visual design to ad-
vertise the services related to physical objects and to
tell users that these physical objects can be interacted
with in a non-ordinary way. Eagle and Pentland [16]
present their research for facilitating face-to-face hu-
man interaction. Their Social Serendipity application
notifies a user when a person nearby has a similar pro-
file. The authors pointed out the need to consider pri-
vacy preserving protocols when developing such sys-
tems. Also, interesting interaction patterns are sug-
gested based on application, e.g. buses could wait for
passengers on a late connection. Beach et al. [4] sug-
gest a similar system. When considering the interac-
tion between objects, most research works concentrate
on agent programming and P2P networks. Agents of-
ten embody all steps within an interaction loop, such as
sensing, analyzing and reacting. Sayouti et al. [46] pro-
pose separation of the interaction-related behaviours
and functionalities from the algorithmic parts of the
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agents. For instance, such a technique offers means of
defining the properties of interactions, such as mutual
exclusion (two interactions are not active at the same
time in the system).

Knowledge-based systems are known for their ad-
vantages when constructing systems adapting to a
changing context. They provide key technologies for
context modelling and reasoning. However, their appli-
cation in the social interaction domain is still rare. One
of the reasons for this is the computational resource
limitations of the interacting devices, which require
all context-management processes to be centralized
on the computationally rich devices (servers). Nowa-
days, pads and smart phones are capable of perform-
ing resource-demanding knowledge processing tasks,
such as context retrieving and reasoning.

Most research focuses on producing knowledge
from the users’ social context which is obtained from
social networks. For instance, Stan et al. [53] create se-
mantic User Interaction Profiles (UIPs) from the con-
tent users share in social platforms in order to recom-
mend similar persons. As another modelling example,
Xu et al. [66] propose an ontology-based approach for
a mobile personalized recommender system, where the
user’s historical data are dynamically collected and in-
tegrated into the domain ontology, which presents the
user profile and is used to calculate the set of recom-
mended items. Kabir et al. [23] explore modelling and
coordinating social interactions in pervasive environ-
ments. Their approach is to model and represent social
interactions and coordinate them to resolve task con-
flicts during multiple concurrent interactions. An in-
teraction is modelled from both the domain and player
(actor) perspectives using the social context. Domain
modelling handles the interactions with a particular
domain or the environment. Player modelling is con-
ducted to capture the interactions of the individuals
considering preferences and context. A fuzzy-logic
reasoning mechanism was utilized in order to infer the
overall importance of the interaction, assisting the ac-
tor to resolve conflicts and make decisions. Truong et
al. [59] utilize Semantic Web technologies to model
the social context.

As can be seen, the reviewed related work is mainly
biased to exploring social platform-based services and
applications. With recent technological development,
it is now possible to equip wearable and surrounding
objects with computational facilities and gather plenty
of context information, even social context. Hence,
many works concentrate on recognizing human-social
activities, which is crucial in order to support it. Few

works consider objects as active participants in inter-
action, even though there is plenty of research on agent
programming and P2P networks. This is understand-
able, as the interaction model was mostly centralized,
and surrounding objects were not able to do any in-
telligent information processing by themselves, hence
there was no real interaction. The situation is chang-
ing now, since many digital devices (e.g. recent smart
phones) are now able to acquire context, process it
and perform reasoning tasks. Moreover, lightweight
mechanisms and distributed reasoning can enrich less
powerful resources of smart space with intelligent be-
haviour. We explore these technologies in Section 5.3
in more detail.

3. Types of interaction in smart spaces

We categorize interaction in smart spaces into four
types. It is important to note that in this classification
we consider that all parties are interaction participants,
not just mediators or tools. For example, when two per-
sons have a phone conversation, only the persons are
actually involved in interaction. Here, the phones are
just the tools, medium to support this interaction. In
addition, we consider participants to have user roles.
Hence, we do not consider other interaction roles, like
interaction between the system developer or adminis-
trator and the system. We define the following types of
interaction in smart spaces:

User-to-User interaction. This is the most tradi-
tional form of interaction, which involves several hu-
man participants, i.e. social interaction. Physical prox-
imity of participants is not necessary for this type of in-
teraction, for example when writing a letter to a friend.
If interacting participants co-present, then, generally
this interaction can be verbal (direct words and ac-
tions) or non-verbal (facial expressions, gestures, pose,
etc.). People perceive these signals, analyze them and
act accordingly. This interaction is usually goal-driven,
meaning that users interact in order to achieve certain
goals. The exact interaction depends on the context,
such as whether interaction is formal, the place of in-
teraction, etc. For this type of interaction, a smart space
is just the physical environment supporting the inter-
action.

User-to-Resource interaction. This interaction type
assumes communication between a user and a resource
of a smart space. With a resource, we refer to a phys-
ical artefact in the environment, which is equipped
with computational, sensing, acting, and communica-
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tion capabilities. Part of these capabilities can be pro-
vided by the environment, e.g. the resource can be
tracked by a video camera. In other words, a resource
has a particular aim to provide, affect and support
the interaction. This interaction type is usually goal-
driven, meaning that interaction happens in order to
achieve a certain result. The interaction itself can be
direct, when the user manually interacts with the re-
source, or mediated, when the interaction is performed
via another resource or physical environment. In this
User-to-Resource type of interaction, smart space can
be considered as a user interface [47] where user ac-
tions lead to system and environment responses.

Resource-to-Resource interaction. This form of in-
teraction assumes communication between the re-
sources of a smart space. This interaction type requires
that resources satisfy the requirements for actors given
in the introduction, and the interaction happens with
and depends on other peer behaviour, as well as situa-
tion context; otherwise we deal just with M2M interac-
tion. Interaction like this can be tightly or loosely cou-
pled. The former is characterized by a predefined inter-
action model, while the latter does not have one. This
type of interaction is goal-driven, which means that
each communication act has an initial purpose behind
it. P2P networks and agent programming can serve as
an example for loosely coupled communication, when
a predefined flow of services can exemplify a tightly
coupled interaction model. Smart space consists of this
type of interaction in order to achieve some utility for
its users.

Facilitated interaction. This kind of interaction
refers to active interaction of smart space resources
in order to achieve some social utility for users, e.g.
initiate interaction. In general, Facilitated interac-
tion unites all other interaction types: User-to-User,
User-to-Resource and Resource-to-Resource interac-
tion (and M2M communication when the resources are
not active participants). This interaction type empha-
sizes the importance of facilitating the user interaction
from interacting resources.

We do not explicitly define the interaction between
services and the overall infrastructure that the smart
space offers because it is clear that infrastructure con-
sists of resources providing services. Figure 1 presents
the interaction types in a smart space. The figure
emphasizes the hierarchy within interaction in the
smart space. That is, Resource-to-Resource interac-
tion is the lowest level and basic interaction type in
smart space. Users may even be unaware that such
interaction exists in the smart space. The User-to-

Fig. 1. Smart space interaction types.

Resource interaction type attracts user attention to the
situation. User-to-User interaction is the highest level
interaction type. All these interaction types can ei-
ther rely on interactions below or proceed indepen-
dently. The arrow in Fig. 1 demonstrates the inter-
action sequence flow in order to achieve Facilitated
interaction (from Resource-to-Resource via User-to-
Resource to User-to-User). Actually, Facilitated in-
teraction can skip User-to-Resource interaction only
when Resource-to-Resource interaction alters the envi-
ronment in such a way that it encourages users to inter-
act with each other. The categorization of interaction
types is shown in Table 1.

4. Context-awareness and interaction

Dey [15] defines context as “any information that
can be used to characterize the situation of an entity.
An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and an
application, including the user and applications them-
selves”. That is, any information which is relevant to
the object constitutes the context. As mentioned ear-
lier, in smart space, there can be plenty of context
information, which we generalize here as the situa-
tion context. Further, we talk about social context in
more detail and discuss how interaction and context-
awareness are connected.

Social context plays an essential role in describing
the situation in which peers interact. Information about
social relations can serve as an example of social con-
text for users. For resources of smart space, the com-
munication constraints for specific situations serve as
an example of social context. In other words, social
context defines the properties of the relationship and
roles of the interacting peers to each other or to a
group of peers. In addition, accepted laws and norms,
historical experience, and culture form the social con-
text. Social context depends on the other types of con-
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Table 1
Types of interaction in smart space

Type Volatility level Direct/Mediated Goal orientation Example

User-to-User
interaction

High Both direct (e.g. face-to-face
communication) and medi-
ated (e.g. writing email)

Medium (usually goal-driven,
however, sometimes goals can
evolve from interaction itself)

Traditional face-to-face in-
teraction between humans,
such as conversation, argu-
mentation, etc.

User-to-
Resource
interaction

Low Both direct and mediated (via
another resource or environ-
ment, e.g. wall display and
mobile phone as its remote
controller)

High for direct interaction and
can have different forms (Low,
Medium, and High) for medi-
ated interaction

Interaction with urban wall
display

Resource-
to-Resource
interaction

Low Usually direct, but can be
mediated, e.g. interaction via
changes in environment per-
ceived by other resources
(stigmergy)

High Interaction between agents

Facilitated
interaction

Low between resources’
interaction, but High be-
tween users’ interaction

Different combinations exist High for resources interaction,
but Medium for users interac-
tion

Mobile devices notify users
when a person nearby has
similar interests

text that the smart space provides. For instance, when
three colleagues discuss their personal story in a coffee
room, it is one social context; but when the same three
colleagues are at a work meeting with their boss, the
social context is different.

A system that uses context in order to provide rele-
vant information or services to users is called context-
aware [15]. Generally, interaction in a smart space is
context-aware. That is, interacting actors constantly
perceive and analyze context, such as the situation, the
time of the day, and act accordingly. Hence, all active
interacting actors perform the following steps: formal-
ization of the context, its acquisition and its analysis
in order to decide what to do when a certain context
changes. These steps are well defined by researchers
as context modelling, context acquisition, context rea-
soning, and acting.

Context modelling refers to the activity of building
an adequate representation of the part of the real world
using concepts and relations between them. A con-
text model assigns semantic meaning to the informa-
tion relevant to the system in a formal way. Elementary
contexts can be organized into high-level, more mean-
ingful contexts. The real world provides such a model
for humans, and language and symbols are utilized to
describe it. However, there is no such real world model
for computational objects, hence, a shared and unified
model of the world must be created when computa-
tional objects are involved in interaction. Different ap-
proaches exist to create context models, for instance
Ontology models and Logic based models [54]. Com-

putational components interact based on the meaning
defined in this context model.

Context acquisition refers to capturing the over-
all situation. This can be done using direct interac-
tion of actors with other participants and the environ-
ment. Alternatively, the context can be retrieved with
different sensing mechanisms. Changing of the situa-
tion is considered as a triggering event. That is, it is
a signal for an actor that analysis is needed regard-
ing what has happened and how the actor should re-
act to this event. Tran et al. [58] suggest that social
context is obtained not only by using sensors, but re-
trieval “requires an understanding of constructed re-
lationships, obligations and constraints underlying the
interactions between collaborating actors.” This im-
plies high volatility of the social context, and constant
usage of learning techniques in order to provide inter-
acting actors with the adequate social context.

Humans interpret the captured context by using re-
flex and cognitive mechanisms. Smart space resources
interpret the retrieved context with various reasoning
techniques which form the rules defining how the inter-
acting actor should respond to different situations [32].
Some of these techniques include historical analysis,
like case-based reasoning (CBR) [1], some tackle well
the ambiguity of context, like probabilistic reasoning
[45]. Reasoning is usually involved in analysis of the
situation and making decisions about actor behaviour.
It can be difficult to reason about a social context, be-
cause of its subjectivity; for instance, interacting actors
may have different interpretations of social context.
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Finally, an action can be associated with the result
of a reasoning process. The action can lead to the ac-
tor’s own adaptation or to a change in the environment,
which in its turn, can lead to a change in the situation
which again has to be reasoned.

As described above, smart space interaction is
context-aware. Hence, as a full participant of interac-
tion, the smart space should retrieve and analyze the
context relevant to the interaction and act according to
it. In other words, the smart space has to be context-
aware.

Knowledge-based solutions provide great support
for developing context-aware applications. Knowledge-
based systems distinguish the process of defining the
domain knowledge and the process of controlling the
system. In the simplest case, such a system consists
of two modules - a knowledge base, containing formal
concepts, facts and rules of the domain problem, and
an inference engine which contains the reasoning algo-
rithms to produce new knowledge from the knowledge
base [21]. Hence, these systems can embody the re-
quired cognitive capabilities for active interaction ac-
tors in a smart space. Interacting actors would be able
to retrieve necessary information, “understand the sit-
uation”, and make decisions on their own.

5. Technologies supporting smart space
interaction

5.1. Technology stack

In this section, we discuss the technology stack re-
quired to facilitate interaction in smart spaces (Fig. 2).
These technologies are needed for User-to-Resource,
Resource-to-Resource, Facilitated and mediated User-
to-User interaction types. Direct User-to-User interac-
tion can be performed without technology, although
technology can support it.

Infrastructure facilitates all interaction in a smart
space by providing the necessary hardware, connectiv-
ity support and software. Hardware equips the smart
space and its actors with the sensing, acting, and com-
puting facilities (sensor networks, computers, digital
supplies). Connectivity provides the communication
means between such hardware resources, like WiFi
and Bluetooth. Software running on the hardware of a
smart space realizes the services and applications that
provide utilities for the users.

Interfaces enable interacting actors to discover and
communicate with each other. For example, Resource-

Fig. 2. Technologies supporting smart space interaction.

to-Resource interaction is enabled through various re-
source communication and access management mech-
anisms. User-to-Resource interaction is supported by
multimodal user interfaces which enable users to inter-
act with resources e.g. using gestures, audio, touch, or
traditional IO devices.

Knowledge Processing provides semantics to the in-
teraction. Context modelling defines the common vo-
cabulary of concepts and their relationships for the en-
tire system. All interaction types need a context model,
so that the interacting actors have the same meaning
for the concepts they operate with. Context reasoning
is required for interpreting the information retrieved
via interfaces and making decisions. In all types of
interaction, actors should constantly reason what ac-
tions to do based on certain circumstances. In other
words, reasoning utilizes the context model in order to
build the rules and logic of interaction. Also, knowl-
edge from a large amount of resources and external
knowledge bases can be integrated to provide a more
complete view of the situation.

A smart space consists of various technologies and
components and hosts plenty of interactions, occur-
ring both synchronously and asynchronously. It is ob-
vious, that a distributed solution should provide more
flexible interaction support. Researchers distribute the
functionality required for smart space applications to
different components [14,42,68]. Kiani et al. [24] con-
sider the scalability advantages distributed solutions
provide in order to develop large-scale context-aware
systems. Winograd [65] outlines in his essay “Func-
tion should be allocated to processors in whatever way
best fits the setting, and the programming metaphor
should be based on multiple independent communicat-
ing components”. In this article, we support this vi-
sion and consider not only the distribution of func-
tions to the different infrastructure components, but
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distribution of the technology to different infrastruc-
ture components as well. That is, we consider the dis-
tribution of knowledge-processing and interface tech-
nologies. This distributed solution assumes coopera-
tive behaviour: distributed components collaborate to
achieve a common task, because no one actor can have
full knowledge about the situation. However, even
though the overall system can have a big collaborative
task, some actors may compete with each other for re-
sources, for performing subtasks, etc.

Further, we will explore how interfaces and knowl-
edge processing technologies can be distributed in or-
der to support the interaction in a smart space, what
challenges can arise, and how they can be solved.

5.2. Interfaces supporting smart space interaction

Interfaces support interaction in smart spaces as fol-
lows: Resource-to-Resource interaction interfaces en-
able interacting actors to discover each other and ex-
change information using various discovery and com-
munication protocols. User-to-Resource interfaces en-
able users to interact with resources in the smart space
using various input and output modalities [2].

Among the most prominent technologies realizing
User-to-Resource interaction interfaces are physical
browsing solutions which “take advantage of mobile
devices physically interacting with tagged objects to
facilitate interaction with associated information and
services” [8]. A well known early example of a phys-
ical browsing solution was proposed by Roy Want et
al. in 1999 [64]. Since then, multiple physical brows-
ing solutions have been built for demonstrating vari-
ous User-to-Resource interaction techniques. In gen-
eral, physical browsing refers to three interaction tech-
niques, namely touching (e.g. using NFC tags), point-
ing (e.g. using a laser pointer) [44] and scanning (e.g.
using Bluetooth) [8,40]. In addition, User-to-Resource
interfaces can be realized using multimodal interfaces
that combine two or more input/output modalities,
such as speech, touch and gestures [50].

From the users’ perspective, physical browsing is
advantageous due to its directness, simplicity and nat-
ural characteristics which give users the feeling of trust
and being in control over the smart space. Multimodal
interfaces, similarly, offer users a natural way of in-
teracting with smart spaces since humans use several
senses to perceive the world. From the design point
of view, multimodal interfaces and physical browsing
make it possible to distribute User-to-Resource inter-
action between users’ mobile devices and the smart

space resources [7,43]. For example, Turunen et al.
[60] demonstrated a prototype of a distributed mul-
timodal interface for smart spaces which was imple-
mented as a combination of a physical browsing solu-
tion with gesture and voice recognition technologies.

Realizing User-to-Resource interaction in smart
spaces poses various challenges for the smart space’s
designers. For example, the smart spaces have to en-
able and manage users’ concurrent access to resources.
This requires the smart spaces to support sharing and
collaborative usage of resources, access conflict res-
olution and timely exchange of information between
users [22,43]. Another issue is related to supporting
continuous discovery and management of resources.
That is, a smart space has to be aware of available re-
sources and their states. This requires the smart space
to continuously sense the environment (i.e. perform
the resource discovery) in order to detect new re-
sources and changes in the availability and other prop-
erties of existing resources. The overall state of the
smart space is made available to applications and their
users through various distributed or centralized reg-
istry mechanisms. This issue can possibly be resolved
by using appropriate mechanisms based on dynamic
resource discovery protocols [61].

Realizing Resource-to-Resource interaction raises
multiple issues related to the communication and dis-
covery mechanisms used by the smart space’s re-
sources. Particularly, resources have to announce their
means of communication (e.g. machine addresses,
APIs and supported protocols) before they can interact
with other resources in the smart space. Usually, this
issue is resolved by using a distributed or a centralized
registry mechanism. However, centralized solutions
may result in performance bottlenecks and may drasti-
cally reduce the overall reliability of the smart space.
In contrast, distributed registry mechanisms, utilizing
P2P or agent technologies, maintain higher reliability,
although, often at the expense of greater implemen-
tation complexity and longer overall response times
[61].

Often, some smart space resources are tiny resource-
constrained devices which are unable to utilize tradi-
tional discovery and communication protocols. This
requires designing lightweight solutions which enable
these resource-constrained devices to discover and
exchange information with each other. One promis-
ing initiative is the Constrained Application Protocol
(CoAP) [51] which allows resource-constrained de-
vices to be connected to the Internet. CoAP applies
the principles of RESTful design and provides ad-
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vanced functionalities, including discovery, caching
and event management. Other promising solutions en-
abling communication between resource-constrained
devices are BiTXml6 and M2MXML7 protocols.
BiTXml protocol implements the presentation level
of the OSI-based communication stack reference in
order to standardize the command and control in-
formation exchange specifically for the demands of
M2M communication. M2MXML is an open stan-
dard XML-based protocol which provides a trans-
port agnostic and extensible framework for M2M
communication in wireless networks. Both solutions
target various resource-constrained devices such as
wireless sensor nodes and portable computing de-
vices.

5.3. Knowledge processing to support interaction

Knowledge Processing technologies enrich smart
space interaction with semantics, and provide mecha-
nisms to reason about actions in certain situations. Tak-
ing into account the amount and diversity of resources
in a smart space, we consider the distributing of knowl-
edge processing as a flexible solution to support inter-
action in smart spaces.

Knowledge processing distribution deals with the
distribution of the knowledge base and inference rules
between the system components according to their
facilities, locations and policies. For instance, some
components can host their own knowledge base and
perform reasoning tasks locally. In this section, we
discuss Resource-to-Resource interaction support be-
cause it is the most challenging case for distributing
knowledge processing technologies.

Rich and Knight [39] define the advantages of dis-
tributed knowledge processing: system modularity,
efficiency, multiple perspectives, heterogeneous rea-
soning, reliability, and privacy. System modularity
brings convenient system development and mainte-
nance when the system is composed of separate com-
ponents corresponding to their own problem domain
and responsible for their own tasks. Each system com-
ponent can search the local knowledge base and rea-
son more efficiently, hence overall efficiency can be
improved. Moreover, different system components can
have their own view on the same situation. Hence,
multiple perspectives achieve a more complete under-
standing of the problem. Heterogeneous reasoning, re-

6www.bitxml.org/ (accessed June 2012)
7www.m2mxml.sourceforge.net/ (accessed June 2012)

sulting from using different reasoning mechanisms,
provides a more flexible solution to the problem. Ad-
ditionally, some components can perform overlapping
functionality; hence, the failure of a single component
will not necessarily affect the achievement of the fi-
nal goal, leading to enhanced reliability. Finally, dis-
tributed architecture provides better means for privacy
support as sensitive information can be processed lo-
cally.

However, design and implementation of a decentral-
ized solution is challenging due to the following issues
[39]:

Knowledge representation and awareness. Interact-
ing components must have a correct understanding of
the exchanged information, as there is no uniform de-
scription of the world (global context model). This is
challenging, because interacting actors may represent
different features of the same environment, or they can
have a different interpretation of the same feature be-
cause of perspective or granularity. For instance, lo-
cation can be given at a room level by one compo-
nent, but by a geo-point by another. Benerecetti et al.
[5] and Bikakis & Antoniou [6] propose the setting up
of maps between partial and perspective agent’s rep-
resentations using a Multi-Context Systems approach.
This approach assumes that together with the knowl-
edge, agents exchange the mapping rules which bridge
the agents’ concepts (local context). Distributed logics
can also be used to define semantic relations between
context models [49].

Awareness refers to making system components
aware when something relevant to them occurs. This
is needed when a certain important property of the en-
vironment cannot be observed by a particular compo-
nent. In this case, other components must inform the
agent about the change or they must act in order to af-
fect the environment in such a way that the agent can
sense the change [3,38].

Coordination and cooperation. This issue refers to
the coordination and cooperation required for agents
to work together. This may include task planning and
decomposition, and execution coordination. Process
planning techniques can be applied for requirements
based composition of complex tasks from atomic ones
(task planning). Task decomposition refers to decou-
pling a complex task into a set of atomic subtasks, and
assigning them to the actors. Task assignment can be
done, for example, by a coordinator agent, or agents
can negotiate for themselves using auction mechanism.

Coordination refers to the management of the task
execution process. The approach depends on the com-
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munication facilities between agents, and the needs for
control and synchronization. For instance, one agent
can be responsible for synchronizing the behaviour of
other agents, like the super-peer in P2P technologies. If
agents cannot communicate with each other, the basic
assumption can be that actors are rational and behave
optimally to fulfil their goals.

Communication. Rich and Knight [39] define two
basic communication models for distributed compo-
nents: blackboard and message passing systems. The
blackboard system consists of the Knowledge sources
(KSs), the Blackboard and the Control component.
KSs are independent modules containing the expertise
needed to solve part of the problem. The blackboard
is a global data repository containing partial solutions,
input data, final solutions and control information. It
serves as the communication medium, buffer and trig-
gering mechanism for KSs, which communicate with
each other by changing the blackboard. The Control
component coordinates the decision making process.
The blackboard architecture solves the context distri-
bution problem, as it utilizes a centralized knowledge
base – the blackboard [12].

Message passing systems rely on direct communi-
cation between components. That is, agents build the
models of other agents, and forward problem requests
to those they assume can handle them. These systems
can utilize modal logic approaches. For instance, Nils-
son [30] introduces a knowledge modal operator K that
denotes the proposition that agent A knows fact B,
K(A, B), axioms and inference rules, so the reason-
ing can be made. The Belief Desire Intention (BDI)
model is another example of introducing modalities
[36]. Some agents utilize modal together with tempo-
ral logic [18], which introduces the sense of time, such
as true now, true always, or true sometimes in the past,
present or future.

Distributed algorithms. To be able to solve tasks
in a distributed fashion, distributed reasoning algo-
rithms are required. For instance, Viterbo [62] and Ye
et al. [67] propose approaches for distributing rule-
based reasoning between different nodes. Distributed
CBR [1] refers to the distribution of cases between
several components. The difficulty appears to be in
retrieving the appropriate solution for problems com-
posed from these cases [35]. A number of probabilis-
tic reasoning mechanisms support distributed design
by their nature, for instance Neural and Bayesian net-
works [45]. For example, Schmidt and Abere [48] pro-
pose a distributed reasoning mechanism based on a

Bayesian Network and a belief propagation algorithm
utilizing P2P technology.

Lightweight solutions. Some devices in a smart
space are not able to perform demanding computations
due to their resource limitations. These cases require
lightweight solutions to represent knowledge and per-
form reasoning. For instance, Su et al. [56] propose a
lightweight mechanism to exchange semantically en-
riched data. Other researchers propose lightweight rea-
soning engines capable of running on mobile phones,
like Androjena8 and KRHyper [52].

6. Prototypes for smart space interaction

In order to exemplify our ideas, we implemented
three prototypes which use knowledge-based technolo-
gies to support smart space interaction. We gradually
implement a more distributed knowledge-based solu-
tion to observe the challenges and advantages of dis-
tribution.

6.1. Overview of the prototypes

Event Map Application (EMA). The goal of this ap-
plication is to explore how knowledge-based technolo-
gies support smart space interaction. EMA is a context-
aware reminder for mobile phone users [55]. The geo-
graphical location of the device, a description of points
of interest (PoIs) and user tasks provide the context
for the application. The social context is formed with
the shared tasks created by users. EMA renders maps
and reminders to mobile phone screens according to
the context. Maps with reminders appear in the fore-
ground only when there is important information to be
shown to the users. At other times, users are not dis-
turbed and can perform normal mobile phone activi-
ties. The interaction scenario implemented is the fol-
lowing: a wife creates a shared task with her husband
to pick up their kids from school. The couple has de-
cided to pick up their kids as soon as possible, so,
at the predefined time, the one who is closer to the
school is sent a reminder with a map to pick the kids
up.

This application was implemented using the client-
server application model (see Fig. 3). Thin mobile
clients contain only GUIs. The server hosts an OWL
ontology knowledge base which contains information
about PoIs, users and tasks, and a Jena rule-based rea-

8http://code.google.com/p/androjena/ (accessed June 2012)
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Fig. 3. Interaction in Event Map Application.

soning engine making decisions about actions. Hence,
all processing is done on the server side; mobile clients
do not make any decisions, they only send and receive
the information from the server.

This centralized solution provides better control for
social communities (sharing tasks with friends, fam-
ily, etc.) because it does not involve negotiating and
distributing algorithms; it therefore simplifies appli-
cation control and development. Moreover, this solu-
tion saves mobile phones from performing resource
demanding reasoning tasks. The main disadvantages of
this implementation are: constant network connectiv-
ity, limited scalability and limited privacy. Often with
mobile applications, it is difficult to achieve constant
and reliable network connectivity to the server. This
solution creates overhead network traffic when mobile
clients send requests to the server with updated GPS
coordinates and the server infers no action. Scalabil-
ity issues should be addressed, as latencies increase
proportionally to the size of the knowledge base and
amount of the active users in the system. Finally, secu-
rity mechanisms should be implemented, as personal
information is handled at the server.

This application participates in different kinds of
interactions, supported by the infrastructure, inter-
face and knowledge processing technologies (see Sec-
tion 3). The infrastructure provides network connec-
tivity, devices, sensors, the server and the external map
rendering service. Interfaces support M2M commu-
nication and direct User-to-Resource interaction. The
server and mobile clients communicate via API inter-
faces when a GUI interface initiates User-to-Resource
interaction - this happens when users approach certain
PoIs. In this prototype, knowledge-processing tech-
nologies are responsible for Facilitated interaction.

That is, the interaction of the users involved in a shared
task arises from interaction of the mobile clients with
the server.

QuizBlasters (QB). QB is a context-aware learning
application, which combines elements of a treasure-
hunt and a multiplayer action game [13]. This appli-
cation features a multimodal context-aware interface
(iCompose) which enables users to compose applica-
tions from resources in the smart space. The applica-
tion supports two modes, the learning mode for a sin-
gle user, and the multiplayer action mode. The learn-
ing mode motivates users to collect and answer differ-
ent learning tasks (i.e. quizzes). Users collect quizzes
by touching NFC tags placed in the smart space us-
ing their mobile phones that are equipped with NFC
readers. By completing these quizzes in a timely man-
ner, users make progress and unlock various virtual
bonuses. The multi-user gaming mode allows users
challenge each other by playing an action game on
a wall display. During this game, the players utilize
the bonuses and weapons which they earn by complet-
ing quizzes in the learning mode. In this game, multi-
ple players destroy each other’s avatars with different
weapons. Users control their avatars on a wall display
using their mobile devices as remote controllers. In or-
der to play the game, two or more users need to com-
pose the application using their mobile devices and a
wall display. In this case, users choose opponents for
the game by bringing their mobile phones into contact.
Likewise, users choose a wall display by touching it
with a mobile phone.

QB utilizes multiple kinds of context, including
the users’ physical location, study performance, daily
schedule, and proximity to other users. The social
context specifies the users’ roles (e.g. students or a
teacher), and the relationships between them (e.g.
friends or classmates). Particularly the social con-
text specifies the so called “rules of engagement”, i.e.
when, where and with whom the players can play
the multi-user game. These rules enforce a certain
behaviour and order (i.e. restrict undesirable usage
of certain resources, restrict gaming during classes,
etc.).

This application was implemented using a hybrid
centralized-distributed architecture, as shown in Fig. 4.
The application’s interface is distributed between the
smart space (NFC-based quiz tags in the environ-
ment), the users’ mobile devices and wall displays.
In addition, the knowledge processing functionality is
distributed between multiple mobile devices and the
server as follows: each mobile device hosts a reason-
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Fig. 4. Interaction in QuizBlasters application.

ing engine which is capable of performing decision-
making independently of the server. The latter also
hosts a reasoning engine. This configuration makes it
possible to preserve a context that is sensitive to the
users on their mobile devices as, in most of cases, their
reasoning engines are able to perform reasoning lo-
cally and involve the server only if required. Although
distributed, this reasoning process still relies on the
server when multiple mobile devices need to synchro-
nize their decision-making processes.

This application supports both Resource-to-Resour-
ce and User-to-Resource interaction. User-to-Resource
interaction is implemented using a multimodal inter-
face comprised of a physical browsing interface and
a traditional graphical user interface, combined with
knowledge based technologies. The latter provide se-
mantics and decision-making capabilities for interac-
tion. For instance, if a student tries to compose a multi-
user game, the student’s local reasoning engine per-
mits or rejects this operation depending on whether
the student has a class at that time. In addition, the
iCompose application facilitates User-to-User interac-
tion through the messaging mechanism, which allows
users 1) to detect potential players in the smart space
using a Bluetooth-based discovery protocol and 2) to
broadcast these players’ “invitation messages”, which
allow them to join a game on a nearby wall display. Fi-
nally, the iCompose interface supports Facilitated in-
teraction. For example, when composing the multi-
user game, reasoning engines, running on the users’
mobile devices, enable them to choose a wall display
and players for the game.

Share Interests (SI). This application enables us to
explore knowledge processing distribution. SI is a mo-

bile context-aware application which uses Bluetooth
to detect people with common interests. Users spec-
ify their hobbies and the types of alerts they expect
to receive. These hobbies are described using private
and public profiles as specified later in the text. Users
also create the rules which detect common interests
with others. These are logical IF-THEN rules and they
are included in profiles. When the application is run-
ning, mobile phones scan for users nearby. If some
users are detected, then the application exchanges the
rules in order to find common interests. We utilize the
rule distribution algorithm suggested by Viterbo [62]
in order to exchange the data defined in the rules’ con-
ditions, instead of whole profiles. If a match is de-
tected, then, both users receive a common interests
alert.

This application has a distributed architecture (see
Fig. 5). The RDF-based knowledge base and the An-
drojena rule-based reasoning component are hosted in
each mobile device, hence all decisions are performed
locally. This allows users to have full control over the
application. In SI, the knowledge base is separated into
public and private profiles. The private profile con-
tains user-sensitive facts and rules. The public profile,
in turn, contains the facts and rules which can be ex-
changed with other users. The public profile has a pre-
defined context model which strictly defines concepts
and their relations. This context model is the same
for all clients. The private profile can contain a con-
text model unique for each client, so that it can be ex-
pressed in any user-defined format. Common interests
are expressed using IF-THEN rules, where conditions
can be presented as the conjunction of elementary con-
ditions. Users also specify the rules for handling Blue-
tooth requests, such as when they are accepted and
when they are rejected. The session mechanism regu-
lates the synchronization of communication between
users.

The SI application demonstrates how Facilitated
interaction can be supported. That is, users’ mobile
devices interact in order to facilitate interaction be-
tween their users. Mobile phones perform their job
unobtrusively. Users are notified only when a match
is found. Interfaces support User-to-Resource interac-
tion by providing an unobtrusive alerting mechanism.
Knowledge processing and interface technologies sup-
port Resource-to-Resource interaction. Mobile devices
interact with each other on behalf of their users; they
process Bluetooth requests, exchange rules and facts,
detect matches and inform users.
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Fig. 5. Interaction in Share Interests application.

6.2. Analysis of the prototypes

These three implemented prototypes explore Facil-
itated smart space interaction. In EMA, user interac-
tion arises from direct communication between mo-
bile phones and the decision-making server. This ap-
plication demonstrates mediated User-to-User interac-
tion, which means that there is no direct face-to-face
interaction between humans; the interaction is me-
diated via rules and messages of the application. In
the QB application, both direct and mediated User-
to-User interaction evolves from direct interaction be-
tween users’ mobile clients and infrastructure (servers
and services). SI contributes to direct User-to-User in-
teraction from direct interaction between several mo-
bile phones. In this application, mobile clients make
decisions themselves and notify their users only when
a match is found. Although the interactions in these
three applications are goal-driven, QB enables users
to initiate interaction simply by exploring the envi-
ronment and trying different interface modalities, like
touching phones together.

Our prototypes consider the smart space with its re-
sources as an active participant of the interaction. For
instance, the QB application motivates users to interact
with the infrastructure and its resources. SI and EMA
applications constantly participate in decision-making
in order to provide social utility for users. The envi-
ronment is not isolated from the applications, but it is
an active part of them. All three applications utilize
user context in decision-making. The developed appli-
cations possess a certain level of autonomy and intel-
ligence to assist users and provide certain utilities for
them.

We compare our three prototypes with the related
work according to the degree of context-awareness and

smart space interactions these systems support. Smart
space interaction evaluation allows us to explore the
interaction types that the system provides. Analysing
the support for context-awareness allows us to eval-
uate the technologies and solutions used to achieve
the interaction. Finally, we are interested in seeing if
there is some correlation between these two charac-
teristics. We compare four works with our prototypes:
we analyze the social application by Eagle and Pent-
land [16] to find people with similar interests. Truong
et al. [59] present a solution to design and implement
collaborative systems, and a meeting scheduling pro-
totype, which we also analyze. Kabir et al. [23] pro-
pose an approach to model and coordinate social con-
text. Their prototype application is the third focus of
our analysis. Beach et al. [4] present the WhozThat
identity sharing protocol, making it possible to share
the social context from social networks. We analyze
their context-aware music player prototype. All these
systems are socially-oriented and achieve Facilitated
interaction.

Figure 6 visually compares the above mentioned
systems with our prototypes according to the context-
awareness features supported. All analyzed systems
utilize social context, represented with different ap-
proaches, in order to support users. For instance, Ea-
gle and Pentland [16] and SI utilize profiles with pub-
lic features in order to find the similar interests among
users. Beach et al. [4] use the profile information found
in social networks. In contrast, QB, Kabir et al. [23],
and Truong et al. [59] explicitly model the social re-
lations of users. This approach is the most advanced,
as it considers the high volatility of the social con-
text.

Among reasoning mechanisms, rules are used most
often. This allows users to express their preferences
more intuitively, as well as utilize advanced rule-
based technologies for decision-making. EMA, SI,
and Truong et al. [59] utilize semantic-based rule-
technologies to perform reasoning. Kabir et al. [23]
implement different rule approaches in their system:
fuzzy rules deal with conflicts, constraint rules are
used to specify temporal relations, and Drools rules de-
fine context changes. QB implements logical program-
ming rules. Both Eagle and Pentland [16] and Beach
et al. [4] implement their own algorithms in order to
trigger certain system behaviour. This approach is less
flexible, in our opinion, as it limits the system main-
tenance. If we consider the architecture of context-
awareness technologies, then a centralized schema,
where the knowledge base and the reasoner are located
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Fig. 6. Context-awareness support (*No detailed information).

at the central node, is the most often used; however,
all work referred to here mention the limitations of
such an approach. As can be observed from Fig. 6, the
higher the polygon area, the more advanced and flexi-
ble technologies are used in the system to support the
context-awareness.

Figure 7 presents the smart space interaction support
provided by analyzed systems. We apply the interac-
tion categories introduced earlier to describe the inter-
action capabilities of these systems. We also analyze
whether interaction is Automatic, Semi-Autonomous
or Modifiable. Automatic interaction means that the in-
teraction pattern is hardcoded and trigger-based. Semi-
Autonomous interaction means that interacting actors
make decisions by themselves. Modifiable interaction
denotes that autonomous decisions can be modified
so that the behaviour of the interaction changes when
necessary. The further to the right the system is lo-
cated on the black horizontal arrow of Fig. 7, the
more autonomous and flexible it is. From the ana-
lyzed systems, QB, SI and Kabir et al. [23] implement
direct Resource-to-Resource interaction, the rest per-
form M2M communication. Kabir et al. [23] and SI
allow modification for resource interaction behaviour.
At the opposite end, resources in EMA, Beach et
al. [4], Eagle and Pentland [16], and Truong et al.
[59] have predefined triggers in order to communi-
cate with other resources. These systems present a
thin client solution, where decision-making is per-
formed at the server. For instance, EMA constantly
sends GPS data to the server, and the server always re-
sponds on whether to act and how. QB performs Semi-
Autonomous Resource-to-Resource interaction, mean-

Fig. 7. Smart space interaction support (Categories, marked with *
are not classified as Automatic/(Semi)Autonomous/Modifiable).

ing that resources decide on their own about whether
to initiate the interaction, based on context.

Different forms of User-to-Resource interaction can
be observed. In Kabir et al. [23] and QB, User-to-
Resource interaction can be both direct and mediated.
This means that in these systems users can directly in-
teract with resources or via other resources in the envi-
ronment. Other systems present either mediated User-
to-Resource interaction (Beach et al. [4]) or direct (Ea-
gle and Pentland [16], Truong et al. [59], SI, EMA).
Some systems allow changing the behaviour by mod-
ifying the resource rules (Fig. 7), like in Kabir et al.
[23], QB, SI, and EMA. Eagle and Pentland [16] and
Beach et al. [4] are little more restrictive in this sense,
as reasoning is performed at the server.

Different forms of User-to-User interaction can be
found as well. SI presents direct User-to-User interac-
tion. QB and Eagle and Pentland [16] allow both direct
and mediated User-to-User interaction. Other systems
present the mediated form of User-to-User interaction,
where users interact via resources.

As mentioned above, all analysed applications de-
monstrate Facilitated interaction, its mediation and
autonomy characteristics are composed from cor-
responding Resource-to-Resource, User-to-Resource
and User-to-User interactions. As Fig. 7 demonstrates,
the implemented prototypes possess some intelli-
gence in order to perform decision-making by the re-
sources.

Kabir et al. [23], QB, and SI are the most advanced
systems for interaction support. More advanced smart
space solutions can be developed based on Beach et
al. [4] and Truong [59], as we have evaluated just
prototypes for their frameworks. EMA and Eagle and
Pentland [16] implement basic interaction support nec-
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essary to serve applications. Of course, smart space
interaction support is a matter of the scenario and
selected design solutions. However, we can observe
some correlation between the context-awareness tech-
nologies used and the system autonomy level for in-
teraction support. Systems which implement more ad-
vanced context-awareness technologies (Fig. 6) are
mostly placed towards the right (Fig. 7). This seems
to be logical, as advanced solutions provide flexibil-
ity and maintenance advantages over hardcoded ap-
proaches.

All implemented prototypes demonstrate that in-
terface design is especially important for User-to-
Resource interaction. To support direct User-to-
Resource interaction, both the EMA and SI applica-
tions provide unobtrusive alert mechanisms for their
users. Similar approaches can be observed in related
work (e.g. Eagle and Pentland [16], Truong et al. [59]).
The interaction behaviour can be changed by rules or
tasks modifying GUI. Kabir et al. [23] provide simi-
lar functionality. The interface in QB is unique: it is
distributed between the environment, mobile phones
and the infrastructure, and supports several modalities,
such as touch-based and manual control. The challenge
for such interface design is that users should perceive
such interaction as natural and not requiring specific
skills to be learnt. Resource-to-Resource interface de-
sign requires well defined protocols. In our applica-
tions, we utilize XML, JSON and Entity Notations [56]
to construct such data-exchange protocol between re-
sources. All our applications use socket and HTTP in-
terfaces for Resource-to-Resource and M2M commu-
nication.

Knowledge-based technologies play a key role in
our applications. Also, only two among the analysed
work do not use them explicitly (see Fig. 6). Gen-
erally, each prototype has a different architecture for
the reasoning mechanism. Distributing the reason-
ing functionality greatly decreases the network over-
load. Our QB and SI applications have faster response
times, and also scalability, reliability and privacy sup-
port advantages over EMA. However, these advan-
tages are achieved at a price of more difficult and time-
consuming implementation and thick client models,
consuming the resources of mobile phones.

Our prototypes demonstrate an evolution from a
fully centralized design approach through hybrid to
a distributed knowledge-based technologies approach.
Obviously, each design solution has its own advan-
tages and disadvantages. Based on our experience, we
highlight the following: 1) Developers must pay at-

tention to scalability issues for centralized solutions.
This is an obvious observation; however, in EMA, we
encountered increasing latencies with an increasing
amount of users. 2) An approach relying on connec-
tivity requires careful handling for network disconnec-
tions, for example, through consistency support. For
instance, EMA relies on constant network connectiv-
ity; however, it is not possible to guarantee that due to
the mobile nature of the application and its geograph-
ical usage scale. Also, the data-exchange protocol
should produce compact messages and should not be
expensive for mobile users. 3) One of the main advan-
tages of a distributed solution is privacy support. We
observed that distributed knowledge-processing tech-
nologies support this well. Our QB and SI applications
did not need any extra solutions to support privacy,
as all decision-making involving sensitive information
was done locally. Obviously, EMA requires such data-
protection mechanisms. 4) Knowledge-based man-
agement solutions (such as cleaning, archiving, etc.)
must be considered when implementing distributed
knowledge-processing technology for resource limited
devices. Indeed, the memory space of such devices is
limited. The SI application does not use much dynamic
context; hence, the size of the knowledge base is not an
issue for this application. The QB application imple-
ments a cleaning mechanism, which deletes irrelevant
or outdated facts.

7. Discussion

In this article, we have considered a smart space as
an active participant of interaction. We clarify the types
of interaction possible in such a smart space. Also,
we consider the importance of the context in such in-
teraction, and discuss the social context. In addition,
this article identifies necessary technologies to facili-
tate smart space interaction. Moreover, we exemplify
our concepts with three prototypes.

We have defined four types of interaction possible
in a smart space. This categorization could help to set
up guidelines for smart space systems design. We find
Facilitated interaction most interesting. This type of
interaction could be an ideal goal for research target-
ing social interaction support. How can human social
interaction be facilitated through interactions between
the resources of a smart space? What utility does in-
teraction among smart space resources bring for users?
These difficult questions raise challenging research is-
sues. For instance, privacy support and the feeling of
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being in control over the situation are relevant exam-
ples in this context.

Different technologies support smart space interac-
tion. We categorized them into three groups. If we con-
sider particularly users, then, for smart space interac-
tion, they utilize mainly the Interfaces. Users provide
information, consume, and interact through natural and
multimodal interfaces. Knowledge management and
Infrastructure lie in the background and are not observ-
able for users and perhaps that is as it should be. How-
ever, for the interaction of resources in a smart space,
all of these groups of technologies move to the fore-
ground. It is vitally important for resources to agree
on the concepts they utilize, to define the interfaces to
communicate, etc. There are many challenges which
were partly discussed in Section 5.

Three prototypes were implemented in order to ex-
emplify our views. All these prototypes implement dif-
ferent types of smart space interaction. Moreover, they
all achieve Facilitated interaction type. That is, all of
our prototypes achieve some social utility for their
users as they do facilitate interaction. We gradually
implemented more and more distributed knowledge-
based solutions into the prototypes to see whether it
brings flexibility for our applications. It is obvious that
a distributed knowledge-processing solution requires
more work, as lightweight mechanisms should be im-
plemented. However, with our prototypes, we clearly
see the advantages of such a distributed design (refer
to Section 6 for more details). We do not argue that our
architectural solution is the only right one. As we dis-
cussed in Section 6, every architecture has its advan-
tages and disadvantages, and heavily depends on the
resources used and scenario.

Interactions in a smart space are dynamic and
volatile. They evolve from changes in the smart
space, user context, events, etc. We find distributed
knowledge-based systems to be a flexible solution for
pervasive scenarios. First, this approach enriches the
system components with the semantics and logic of in-
teraction; hence, each interacting component can par-
ticipate in many interesting interaction scenarios, make
its own decisions and act based on certain circum-
stances. Moreover, interacting components can initi-
ate (achieving an active role in smart space interac-
tion) and even facilitate interaction among users, as
it was demonstrated with the prototypes. As techno-
logical development continues, we may expect more
and more devices that able to perform computational
activities; hence, we will be able to enrich them with
the semantics of the situations they are used in. This

way, the system can acquire knowledge from the en-
vironment, and not only the data, by studying objects
and their semantic relations. This could improve the
learning capabilities of the system and devices as well.

The work towards interactive smart spaces is ongo-
ing. Researchers work to recognize human social ac-
tivities in smart spaces. When these activities can be
recognized, it will be possible to provide support and
services for them – considering the smart space as an
active actor. Specifically, lightweight and distributed
solutions would help to enrich the surrounding objects
with the intelligence needed for smart space interac-
tion.

Acknowledgments

We would like to thank all our colleagues for imple-
menting the prototypes mentioned in this article: Iván
Sánchez Milara, Jussi Mäkipelto, Mikko Pyykkönen,
Paweł Kwiatkowski, Tomasz Latkowski, Alma Pröb-
stl, Bartłomiej Wójtowicz, Kun Wang and Yili Jin.
Also, we would like to thank all test users who helped
us to analyze the designed applications. We thank Dr
Pentti Luoma for fruitful discussions about aspects of
social interaction. This work was carried out in the Per-
vasive Service Computing project funded by the Ubiq-
uitous Computing and Diversity of Communication
(MOTIVE) program of the Academy of Finland. Eka-
terina Gilman would like to thank GETA (the Grad-
uate School in Electronics, Telecommunications and
Automation), the Walter Ahlström and Tauno Tönning
foundations for funding support. Xiang Su would like
to thank the Infotech Oulu Graduate School and the
NOKIA Foundation for funding.

References

[1] A. Aamodt and E. Plaza, Case-based reasoning: Foundational
issues, methodological variations, and system approaches, AI
Communications 7(1) (1994), 39–59.

[2] Z. Antoniou and S. Varadan, Intuitive mobile user interaction
in smart spaces via NFC-enhanced devices, in: Proc. of 3rd Int.
Conf. on Wireless and Mobile Communications, March 2007,
pp. 86.

[3] P. Barron and V. Cahill, Using stigmergy to co-ordinate perva-
sive computing environments, in: Proc. of 6th IEEE Workshop
on Mobile Computing Systems and Applications, Dec. 2004,
pp. 62–71.

[4] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley, K. Nishi-
moto, B. Ray, S. Razgulin, K. Sundaresan, B. Surendar, M. Ter-
ada, and R. Han, WhozThat? Evolving an ecosystem for
context-aware mobile social networks, IEEE Network 22(4),
50–55.



E. Gilman et al. / Towards interactive smart spaces 21

[5] M. Benerecetti, P. Bouquet, and M. Bonifacio, Distributed
context-aware systems, Human-Computer Interaction, 16(2–4)
(2001), 213–228.

[6] A. Bikakis and G. Antoniou, Distributed defeasible contex-
tual reasoning in ambient computing, in: Proc. of the Euro-
pean Conference on Ambient Intelligence, E. Aarts et al., eds,
LNCS, Vol. 5355, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 308–325.

[7] M. Blumendorf, D. Roscher, and S. Albayrak, Dynamic user
interface distribution for flexible multimodal interaction, in:
Proc. of the Int. Conf. on Multimodal Interfaces and the Work-
shop on Machine Learning for Multimodal Interaction, ACM,
NY, USA, 2010, Article 20, 8 pp.

[8] G. Broll, E. Rukzio, M. Paolucci, M. Wagner, A. Schmidt,
and H. Hussmann, PERCI: Pervasive service interaction with
the internet of things, in: IEEE Internet Computing, Nov./Dec.
2009, pp. 74–81.

[9] C.-W. Chen, R.C. Ugarte, C. Wu, and H. Aghajan, Discovering
social interactions in real work environments, in: Proc. of the
IEEE Int. Conf. on Automatic Face & Gesture Recognition and
Workshops, March 2011, pp. 933–938.

[10] S. Cohen, Social relationships and health, American Psycholo-
gist 59(8), (2004), 676–684.

[11] D. Cook, A. Crandall, G. Singla, and B. Thomas, Detection
of social interaction in smart spaces, Journal of Cybernetics
and Systems, special issue on social awareness in smart spaces
41(2) (2010), 90–104.

[12] D.D. Corkill, Collaborating software: Blackboard and multi-
agent systems & the future, in: Proc. of the International Lisp
Conference, 2003, Invited paper.

[13] O. Davidyuk, E. Gilman, I. Sánchez, J. Mäkipelto, M. Pyykkö-
nen, and J. Riekki, iCompose: Context-aware physical user in-
terface for application composition, Central European Journal
of Computer Science 1(4) (2012), 442–465.

[14] A.K. Dey, Providing architectural support for building context-
aware applications, PhD Dissertation, Georgia Institute of
Technology, 2000.

[15] A.K. Dey, Understanding and using context, Personal and
Ubiquitous Computing 5(1) (2001), 4–7.

[16] N. Eagle and A. Pentland, Social serendipity: Mobilizing social
software, Pervasive Computing, IEEE 4(2) (2005), 28–34.

[17] N. Eagle, A. Pentland, and D. Lazer, Inferring social net-
work structure using mobile phone data, Proc. of the National
Academy of Sciences 106(36) (2009), 15274–15278.

[18] E.A. Emerson, Temporal and modal logic, in: Handbook of
Theoretical Computer Science, J. van Leeuwen (ed.), Elsevier,
1990, pp. 996–1072.

[19] A. Hang, G. Broll, and A. Wiethoff, Visual design of physical
user interfaces for NFC-based mobile interaction, in: Proc. of
the 8th ACM Conf. on Designing Interactive Systems, ACM,
NY, USA, 2010, pp. 292–301.

[20] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kad-doura, and
E. Jansen, The Gator Tech Smart House: A programmable per-
vasive space, Computer 38(3) (2005), 50–60.

[21] A.A. Hopgood, The state of artificial intelligence, in: Advances
in Computers, Vol. 65, Elsevier, 2005, pp. 1–75.

[22] M. Jurmu, H. Kukka, S. Hosio, J. Riekki, and S. Tarkoma,
Leasing service for networks of interactive public displays in
urban spaces, in: Proc. of the 6th Int. Conf. on Advances in
Grid and Pervasive Computing, May 11–13, LNCS, Vol. 6646,
Springer, Berlin/Heidelberg, 2011, pp. 198–208.

[23] M.A. Kabir, J. Han, and A. Colman, Modeling and coordinat-
ing social interactions in pervasive environments, in: Proc. of
the 16th IEEE Int. Conf. on Engineering of Complex Computer
Systems, April 2011, pp. 243–252.

[24] S.L. Kiani, B. Moltchanov, M. Knappmeyer, and N. Baker,
Large-scale context-aware system in smart spaces: Issues and
challenges, in: Internet Communications (BCFIC Riga), 2011
Baltic Congress on Future, Feb. 2011, pp. 173–180.

[25] M. Kranz, P. Holleis, and A. Schmidt, Embedded interaction
– interacting with the internet of things, in: IEEE Computing,
Special Track on Internet of Things, April–June 2010.

[26] J. Lifton, M. Laibowitz, D. Harry, N.-W. Gong, M. Mittal,
and J.A. Paradiso, Metaphor and manifestation cross-reality
with ubiquitous sensor/actuator networks, Pervasive Comput-
ing, IEEE 8(3) (2009), 24–33.

[27] G. Lugano, Mobile social software: Definition, scope and ap-
plications, in: eChallenges conference, Holland, October 2007.

[28] K. Lukka, The constructive research approach, in: Case Study
Research in Logistics, L.Ojala and O.-P. Hilmola, eds, 2003,
pp. 83–102.

[29] M.C. Mozer, Lessons from an adaptive house, in: Smart en-
vironments: Technologies, protocols, and applications, Hobo-
ken, NJ, D. Cook and R. Das, eds, J. Wiley & Sons, 2005, pp.
273–294.

[30] N.J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1998.

[31] N.M. Oliver, B. Rosario, and A.P. Pentland, A Bayesian com-
puter vision system for modeling human interactions, IEEE
Transactions on Pattern Analysis and Machine Intelligence
22(8) (2000), 831–843.

[32] M. Perttunen, J. Riekki, and O. Lassila, Context representa-
tion and reasoning in pervasive computing: A review, Interna-
tional Journal of Multimedia and Ubiquitous Engineering 4(4)
(2009), 1–28.

[33] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, D. Fox,
H. Kautz, and D. Hahnel, Inferring activities from interactions
with objects, IEEE Pervasive Computing 3(4) (2004), 50–57.

[34] S. Pirttikangas, I. Sánchez, M. Kauppila, and J. Riekki, Com-
parison of touch, mobile phone, and gesture based controlling
of browser applications on a large screen, in: Adjunct Proceed-
ings Pervasive Sydney, Australia, 2008, pp. 5–8.

[35] N.M.V. Prasad, V. Lesser, and S. Lander, Retrieval and reason-
ing in distributed case bases, Journal of Visual Communication
and Image Representation, Special Issue on Digital Libraries,
7(1) (1996), 74–87.

[36] A.S. Rao and M. Georgeff, BDI agents: From theory to prac-
tice, in: Proc. of the 1st Int. Conf. on Multi-Agent Systems,
1995, pp. 312–319.

[37] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, Context-
Phone – A prototyping platform for context-aware mobile ap-
plications, IEEE Pervasive Computing 4(2) (2005), 51–59.

[38] A.Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva, Cog-
nitive stigmergy: A framework based on agents and artifacts,
in: Environments for Multi-Agent Systems III, D. Weyns et al.,
eds, LNCS, Vol. 4389, 2007, pp. 124–140.

[39] E. Rich and K. Knight, Artificial Intelligence, McGraw-Hill,
Inc., 1991.

[40] J. Riekki, T. Salminen, and I. Alakarppa, Requesting pervasive
services by touching rfid tags, IEEE Pervasive Computing 5
(2006), 40–46.



22 E. Gilman et al. / Towards interactive smart spaces

[41] J. Riekki, I. Sanchez, and M. Pyykkönen, Remote control for
pervasive services, International Journal of Autonomous and
Adaptive Communications Systems 3(1) (2010), 39–58.

[42] M. Román, C. Hess, R. Cerqueira, A. Ranganathan,
R.H. Campbell, and K. Nahrstedt, A middleware infrastructure
for active spaces, IEEE Pervasive Computing 1(4) (2002), 74–
83.

[43] D. Roscher, M. Blumendorf, and S. Albayrak, A meta user
interface to control multimodal interaction in smart environ-
ments, in: Proc. of the 14th Int. Conf. on Intelligent User Inter-
faces, ACM, NY, USA, 2009, pp. 481–482.

[44] E. Rukzio, K. Leichtenstern, V. Callaghan, P. Holleis,
A. Schmidt, and J.S.-Y. Chin, An experimental comparison of
physical mobile interaction techniques: Touching, pointing and
scanning, in: Proc. on the 8th Int. Conf. on Ubiquitous Com-
puting, 2006, pp. 87–104.

[45] S. Russel and P. Norvig, Artificial Intelligence: A Modern Ap-
proach 2/E, Prentice Hall, 2002.

[46] A. Sayouti, F. Qrichi Aniba, and H. Madromi, Interactions
between agents as shared resources in multi-agents systems,
in: New Technologies, Mobility and Security, Nov. 2008,
pp. 1–4.

[47] A. Schmidt, M. Kranz, and P. Holleis, Interacting with the
ubiquitous computer: towards embedding interaction, in: Proc.
of the Joint Conf. on Smart Objects and Ambient Intelligence:
Innovative Context-Aware Services: Usages and Technologies,
ACM, NY, USA, 2005, pp. 147–152.

[48] R. Schmidt, and K. Abere, Efficient Peer-to-Peer belief prop-
agation, in: Proc. of OTM Confederated Int. Conf., CoopIS,
DOA, GADA, and ODBASE 2006, R. Meersman and Z. Tari,
eds, LNCS, Vol. 4275, Springer-Verlag, Berlin, Heidelberg, pp.
516–532.

[49] L. Serafini and A. Tamilin, DRAGO: Distributed reasoning ar-
chitecture for the semantic web, in: Proc. of 2nd European Se-
mantic Web conf. on The Semantic Web: Research and Applica-
tions, A. Gómez Pérez, and J. Euzenat, eds, LNCS, Vol. 3532,
Springer-Verlag, Berlin, Heidelberg, 2005, pp. 361–376.

[50] R. Sharma, V.I. Pavlovic, and T.S. Huang, Toward multimodal
human-computer interface, Proc. of the IEEE 86(5) (1998),
853–869.

[51] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, Con-
strained Application Protocol (CoAP), Internet-Draft (work
in progress) <draft-ietf-core-coap-08>, Sensinode, Universi-
taet Bremen TZI, SkyFoundry (accessed January 2012).

[52] A. Sinner and T. Kleemann, KRHyper – In your pocket, in: Au-
tomated Deduction – CADE-20, R. Nieuwenhuis, ed., LNCS,
Vol. 3632, Springer, Berlin/Heidelberg, 2005, pp. 737.

[53] J. Stan, V.-H. Do, and P. Maret, Semantic user interaction pro-
files for better people recommendation, in: Proc. of the Int.
Conf. on Advances in Social Networks Analysis and Mining,
July 2011, pp. 434–437.

[54] T. Strang and C. Linnhoff-Popien, A context modeling sur-
vey, in: Proc. of the Workshop on Advanced Context Modelling,
Reasoning and Management within 6th Int. Conf. on Ubiqui-
tous Computing, Nottingham, England, 2004.

[55] X. Su, E. Gilman, P. Kwiatkowski, T. Latkowski, A. Pröb-
stl, B. Wójtowicz, and J. Riekki, Knowledge-based sys-
tems for ambient social interactions, in: Ambient Intelli-
gence, D. Keyson et al., eds, LNCS, Vol. 7040, Springer,
Berlin/Heidelberg, 2011, pp. 61–71.

[56] X. Su, J. Riekki, and J. Haverinen, Entity notation: Enabling
knowledge representations for resource constrained sensors,
in: Personal and Ubiquitous Computing, 2011, pp. 1–16.

[57] A. Toninelli, A. Pathak, and V. Issarny, Yarta: A middleware
for managing mobile social ecosystems, in: Advances in Grid
and Pervasive Computing, Riekki et al., eds, LNCS, Vol. 6646,
Springer, Berlin/Heidelberg, 2011, pp. 209–220.

[58] M.H. Tran, J. Han, and A. Colman, Social context: Supporting
interaction awareness in ubiquitous environments, in: Proc. of
the Int. Conf. on Mobile and Ubiquitous Systems: Networking
& Services, July 2009, pp. 1–10.

[59] H.-L. Truong, S. Dustdar, D. Baggio, S. Corlosquet, C. Dorn,
G. Giuliani, R. Gombotz, Y. Hong, P. Kendal, C. Mel-
chiorre, S. Moretzky, S. Peray, A. Polleres, S. Reiff-Marganiec,
D. Schall, S. Stringa, M. Tilly, and H.Q. Yu, inContext: A per-
vasive and collaborative working environment for emerging
team forms, in: Proc. of the Int. Symp. on Applications and the
Internet, July 2008, pp. 118–125.

[60] M. Turunen, A. Kallinen, I. Sanchez, J. Riekki, J. Hella, T. Ols-
son, A. Melto, J.P. Rajaniemi, J. Hakulinen, and E. Makinen,
Multimodal interaction with speech and physical touch inter-
face in a media center application, in: Proc. of the Int. Conf.
on Advances in Computer Enterntainment Technology, ACM,
2009, pp. 19–26.

[61] C.N. Ververidis and G.C. Polyzos, Service discovery for mo-
bile Ad Hoc networks: a survey of issues and techniques, Com-
munications Surveys & Tutorials, IEEE 10(3), 30–45.

[62] J. Viterbo, Decentralized reasoning in Ambient Intelligence,
PhD dissertation, Pontifícia Universidade Católica do Rio de
Janeiro (PUC-Rio), 2009.

[63] L. Wang, T. Gu, X. Tao, J. Lu, and M. Tscheligi, Sensor-based
human activity recognition in a multi-user scenario, in: Am-
bient Intelligence, B. de Ruyter et al., eds, LNCS, Vol. 5859,
Springer, Berlin/Heidelberg, 2009, pp. 78–87.

[64] R. Want, K.P. Fishkin, A. Gujar, and B.L. Harrison, Bridging
physical and virtual worlds with electronic tags, in: Proc. of the
SIGCHI Conf. on Human Factors in Computing Systems: The
CHI is the Limit, ACM, 1999, pp. 370–377.

[65] T. Winograd, Architectures for context, Human-Computer In-
teraction 16(2) (2001), 401–419.

[66] Y. Xu, J. Gu, J. Yang, and Z. Zhang, An ontology-based ap-
proach for mobile personalized recommendation, in: Proc. of
the Int. Conf. on Services Science, Management and Engineer-
ing, July 2009, pp. 336–339.

[67] J. Ye, J. Li, H. Shi, X. Gu, and Z. Zhu, DFre: A distributed
fuzzy reasoning engine for personalization recommendation,
in: Proc. of 3rd Int. Conf. on Pervasive Computing and Appli-
cations, Vol. 2, 2008, pp. 576–581.

[68] A. Zimmermann, Context management and personalisation: A
tool suite for context- and user-aware computing, PhD disser-
tation, Fraunhofer FIT, 2007.


