
Comparative API Complexity Analysis of Two
Platforms for Networked Multiplayer Games using

a Reference Game
Toni Alatalo⇤†‡, Erno Kuusela⇤†‡, Rauli Puuperä⇤‡, and Timo Ojala⇤

⇤Department of Computer Science and Engineering, University of Oulu, Finland
†Center for Internet Excellence, University of Oulu, Finland

‡Playsign Ltd., Oulu, Finland

Abstract—In this paper we propose the quantitative analysis
of the complexity of a simple reference game implemented on
a particular gaming platform as means for characterizing how
the platform succeeds in easing the development of networked
multiplayer games. We first present our own open source tool
based on Sneed’s Object-Point (OP) method for the automatic
quantitative assessment of the complexity of a software API by
analyzing a source code using the API. We then apply our tool,
together with the recently released JSComplexity tool based on
classical software complexity metrics, to compare two platforms
for networked multiplayer games, the open source realXtend
Tundra SDK and the proprietary Union. As the reference games
we use existing implementations of the simple Pong game atop
the two platforms. Our data shows that these complexity metrics
reveal API design tradeoffs, resulting in complexity differences
in the reference games.

I. INTRODUCTION

Reusable software libraries and platforms are pivotal for
managing complexity in game development. Their APIs vir-
tualize underlying functionality, including but not limited to:
game entity management, scene construction, mathematics,
input events, rendering graphics, gui input widgets, asset
retrieval, game data networking, user authentication and data
storage. Thus, APIs are essential for productive game devel-
opment. It has been noted how making good APIs is hard -
and that creating a bad API is easy [1]. Even a small quirk
in an API can accumulate to substantial problems in larger
bodies of application source code. API design has a significant
impact on software quality, and increased API complexity is
associated with increased software failure rates [2].

Also single player games encompass rich multifaceted
functionality, but networked multiplayer games are typically
much more complex. In network programming the developer
needs to deal with events, conflicts and error conditions
originating from other parts of the distributed system as well
as the local user. This is emphasized in multiuser real-time
systems when compared to the relatively leisurely request-
response interaction patterns of most client-server applications.
Developing a massively multiplayer online game (MMOG) has
been estimated to typically take two to three times longer than
creating and launching a single-player game [3].

Rigorous quantitative assessment of a gaming platform in
terms of ease and productivity of development is very chal-
lenging. Hsiao and Yuan [3] proposed four essential “ease of”

requirements for a MMOG middleware: ease of development,
deployment, maintenance and change. However, they noted the
difficulty of quantitatively measuring the ease of development
or change, and focused only on platform scalability in their
evaluation.

We propose to use the implementations of reference game(s)
as means for comparing the “ease of” dimension of game
APIs. In this article we examine how the quantitative analysis
of a reference game implemented atop a particular game
development platform enables us to characterize how the
platform succeeds in reducing development complexity. Thus,
we need two things: a method for quantitative analysis of
software complexity, and reference game(s). The collection
of reference games effectively mimics a common corpus that
for example in the information retrieval research is often used
to compare the performance of different information retrieval
algorithms.

Inspired by recent progress in quantitative techniques for
software complexity analysis [2], [4], we first propose a tool
based on Sneed’s Object-Point (OP) method for the quantita-
tive assessment of the complexity of a software API based on
the automatic analysis of a source code using the API. Then we
use the tool to compare Tundra’s API complexity to that of the
Union platform with pre-existing implementations of the Pong
game on the two platforms, i.e. Pong serves as the minimal
reference implementation of a networked multiplayer game
in our study. As a complementary API complexity analysis
method we use the recently introduced JSComplexity tool
based on classical software complexity metrics [5]. Our study
shows that the API complexity metrics calculated from the
reference games with the tools indeed successfully quantify
the different amounts of complexity that the game developer
has to manage on these two alternate platforms.

Our underlying motivation is understanding how the API of
the open source realXtend Tundra SDK, recently introduced
by Alatalo [6], succeeds in hiding the complexity of networked
multiplayer games. We plan to use the insight and the com-
plexity measures in on-going development of the platform and
an even friendlier API.

This paper is organized as follows. After briefly reviewing
related work on API complexity analysis we present our tool.
Then we report our case study on using the tool to compare

978-1-4673-6263-4/13

c� 2013 IEEE

GAS 2013, San Francisco, CA, USA

Accepted for publication by IEEE.

c� 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

44

the API complexity of the two platforms in the development
of the Pong game. We conclude the paper with a discussion
on various aspects of the study.

II. RELATED WORK ON API COMPLEXITY ANALYSIS

A wide range of qualitative and quantitative approaches
have been proposed for assessing the complexity of software
APIs. The API usability research has adapted traditional
qualitative usability evaluation methods of the HCI field such
as thinking aloud, heuristic evaluation and cognitive walk-
throughs into evaluating APIs [7]. Employed metrics include
the completion times of predefined tasks, for example.

In comparison to task-based usability evaluation of GUIs,
API evaluation based on human observations is challenging.
When developing a small application can take even weeks,
fitting valid evaluation tasks into an observation session lasting
typically 1-2 hours is difficult [8]. The recently introduced
peer review [9] and the concept maps [8] methods address
this problem by involving real world usage of an API over
a long period of time. However, they are still considerably
laborious and yield only qualitative findings.

Recently, statistical (quantitative) methods have been pro-
posed for analyzing the complexity of software APIs. Cataldo
and de Sousa [2] studied two large corporate software projects
and nine open source projects and found a link between the
API complexity and the failure proneness of the software
quantified by the number of bug reports from the field. They
quantified the complexity of an API by simply calculating
the number of public methods and attributes. The approach
is subject to severe limitations as it fails to take into account
pre- and post-invocation assumptions and possible invocation
sequences.

de Souza and Bentolila [10] introduced the Metrix tool
that evaluates an API by calculating Bandi’s software metrics
for interface size, interaction level and operation argument
complexity from the API specification. After analysing eleven
different APIs with the Metrix tool, de Souza and Bentolila
concluded that calculating such simple metrics directly from
the API specification can produce misleading results. A more
complete API may appear more complex, even if it provides
good abstractions that allow completing a particular task at
hand with only a small subset of the API.

An alternative to evaluating the complexity of an API with
simple metrics calculated from the API specification is to
assess the complexity of programs developed using the API.
Sobernig et al. [4] proposed exactly this in their comparative
study of the complexity of four different API designs. To
characterize the complexity of a particular API, they applied
Sneed’s [11] Object-Point (OP) analysis to software realized
atop the API. The key is to apply a surrogate measurement so
that a program developed using an API is analyzed, not the
API specification itself.

Osmani[12] published TodoMVC, a collection of “To Do”
web application implementations built with various Javascript
web frameworks. Here the source codes of the minimal
implementations are meant for people to read for comparative

evaluations. We propose the same approach for networked
games but combined with automated quantitative analysis.

III. API COMPLEXITY ANALYSIS TOOLS

A tool facilitating automated and quantitative analysis of the
complexity of an API from an existing body of source code
developed using the API would provide several advantages.
First, real world data, i.e. source codes of existing applications,
could be utilized. Second, in comparison to manual meth-
ods, the analysis would be faster with immediate feedback
and would require much smaller amount of human labor.
Third, longitudinal studies of API development would be
straightforward to conduct by analyzing successive software
versions. A fully automated analysis could be embedded into
the continuous integration of a software bundle, to characterize
the evolution of its complexity over time.

A. Our Tool Based on Sneed’s Object-Point (OP) Method
Following the work of Sobernig et al. [4], we base our

tool on Sneed’s Object-Point (OP) method [11]. However, in
contrast to their manual data collection, our tool automatically
extracts the data needed by the OP method from a program’s
source code. The OP method uses intermediate UML models
as the data to compare programs in different languages.
Importantly, the OP method allows direct tracking between
indicator values and program structures, which is elementary
in evaluating API designs. For example, if many codebases get
a high proportion of their complexity value due to a specific
part of an API, it can then be examined qualitatively.

So called API hotspots and coldspots have been previously
automatically mined from source code [13]. There, however,
the specific parts of an API are not analyzed as sources of
complexity, but simply to identify how much they are used.
Their source code mining is similar to our tool that also needs
to identify which functions are called and how often to employ
the OP method.

1) Sneed’s Object-Point (OP) Method: Although the OP
method was originally developed for deriving early work
estimates from UML design diagrams, recently it has also been
applied to analyzing the complexity and cost of existing soft-
ware implementations. While the early COCOMO software
cost models used simply program size (LOC, lines of code) to
estimate development effort, later the more versatile Function-
Point, the Data-Point and finally the Object-Point methods
have emerged to incorporate functionality and other program
properties into the cost estimate [14].

Sobernig et al. illustrated the relative robustness of the OP
method to the simple LoC metric on two software implemen-
tations. The first software had only 48 LoC but resulted in
356.34 OP. The second software had 144 LoC but only 266.76
OP. Their reasoning was: “an API user is only exposed to
an API feature chunk of low structural complexity”, as “the
chunks size is limited in terms of participating classes and
the smallest number of operations per class” and it “shows
a relatively weak connectedness of classes, resulting from
the small number of associations and generalizations between

45

the classes” [4]. This reasoning is of utmost relevance to
our objective of easing the development of networked game
development with good API designs in Tundra. We pursue
a limited set of powerful abstractions with clear interactions
that a game developer could easily learn and grow to master.
Not all source code lines are equal - a poorly designed API
makes it a struggle to get even a few operations working if
the developer has to strive for functionality scattered around
in an incoherent way.

The Object-Points, as applied here, are a sum of two parts:
Class Points (CP) and Message Points (MP).

Class Points (CP) (Eq. 1-4) are calculated from the static
class structure: the class count and sums of attribute, operation
and relation counts. Weights are employed to correct the values
for the overall calculation. Class inheritance is taken into
account by calculating novelty weights for specializing classes.

Message Points (MP) (Eq. 5-8) are defined by the set of
operations (functions/methods) actually used in the software.
First, the number of operations is recorded. Then, the param-
eter count for each called operation is collected. Also, the
source and target counts of the operation calls are established.
Again, novelty weights are used to compensate for repeated
occurrences due to subclassing.

CP =

WC|C|+ Â

c2C
|Ac|+WRC Â

c2C
|Rc|+WOC Â

c2C
|Oc|

!
NC, (1)

where (2)

NC =
Âc2C Nc

|C| , and (3)

Nc =

(
1, if class is novel
0.5, if class has a super class

(4)

MP =

WOM |OM |+ Â

o2OM

|Po|+WSO Â
o2OM

|So|+WTO Â
o2OM

|To|
!

NOM ,

(5)
where (6)

NOM =
Âo2OM No

|OM | , and (7)

No =

(
1, if operation is novel
0.5, if operation is provided by super class

(8)

C, |C|... Set of classes, Class count
|Ac|... Attribute count per class
|Oc|... Operation count –”–
|Rc|... Relation count –”–

Nc... Novelty weight of class c
NC Avg. class novelty

|OM ... Set of called operations
|OM |... Called operation counts
|Po|... Parameter count of operation o
|So|... Source count –”–
|To|... Target count –”–
No... Novelty weight –”–

The weights are adopted directly from the earlier usage
of OP for API complexity analysis, which further uses the
standard Data Points analysis values by Sneed [11].

2) Extracting Object-Point Data from Source Code: To
obtain the static class data for the Class Points (CP), we utilize
existing source code parsing and annotation systems in the
API documentation tools. The first alternative implementations
for a minimal networked game on different modern high-level
APIs studied here are written as a Javascript application and
a combination of Actionscript (as3) for the client and Java for
the server module. We have developed parsers for the internal
intermediate representations of class and method signatures in
JsDoc JSON and AsDoc XML formats. The class information
is read by a Python application to an internal model which
contains the data for the OP calculation, implemented in
another module in the same Python application.

To calculate the Message Points reflecting the dynamic
function calls, we use the Closure Javascript compiler to
traverse the source code to collect function calls and their
argument counts. A parser made with Python is used to read
the function call data required to calculate the MPs.

While our tool calculates complete Class Point data, it
currently omits two factors in Message Point data: the source
and target counts of the interactions, and the novelty weight.
While the tool tallies separate calls to each called function in
the source code, it is not yet clear how to map them into
the MP values. Sobernig et al. always set the source and
target counts to 1. For the novelty weight we should check
for each called operation called whether it is implemented in
that class or inherited from a superclass. Our tool does not
currently know the class of the object in which an operation
is called. These omissions are not expected to affect the OP
values significantly, at least not to the extent undermining the
conclusions of this study.

Finally, to facilitate manual validation and visual commu-
nication of the data extracted from the source codes, our tool
also creates UML class diagrams from the very same in-
memory data structure that is used in the OP calculation. We
chose the UXF format of the open source Umlet GUI diagram
tool, due to its simple and straightforward XML format and
the even simpler plaintext syntax used to describe individual
UML elements, such as a class or a relation. This allows
further manual editing of the diagrams with the GUI tool to
improve the layout and annotation with notes. We are not
aware of any previous implementation of directly extracting
data for the OP method from the source code. Repository
based automatic queries for OP analysis have been presented
earlier by Henrich [14]. There, a repository of documents, or
abstract software design models (PCTE), was queried using
the P-OQL language.

B. JSComplexity
JSComplexity is a recently released tool for analyzing the

software complexity of JavaScript projects [5]. It reports four
different types of complexity metrics of which we use the
cyclomatic complexity and the maintainability index. Cy-
clomatic complexity introduced by McCabe [15] counts the
number of linearly independent paths through a source code.
Lower values are better and McCabe suggested using ten as

46

a threshold value, beyond which modules should be split into
smaller units. The maintainability index introduced by Oman
et al. [16] is calculated as follows: 171 - (3.42 * ln(mean
effort)) - (0.23 * ln(mean cyclomatic complexity)) - (16.2 *
ln(mean logical LOC)).

The maintainability index gets values on a logarithmic
scale ranging from negative infinity up to 171, with larger
values indicating a higher level of maintainability. Oman et al.
identified 65 as the threshold value below which a program
should be considered difficult to maintain.

IV. CASE SETUP

A. Pong as a Reference Game
We propose using the Pong game as a minimal networked

multiplayer reference game in the subsequent API complexity
analysis. While Pong is tiny in its functionality, it is still suf-
ficient for demonstrating key challenges in networked games,
given the functional combination of the clients controlling their
own paddles and the ball bouncing in the shared space. Pong
has been used in networked game research earlier, recently in
an interesting study of latency compensation techniques [17].
Also, even a minimal game such as Pong reveals the amount
of software needed for the basic functionality: launching the
networked game, establishing connections, handling players
joining in and dropping out, and synchronizing gaming events.

B. Game Platforms
We briefly introduce the two game platforms whose API

complexity we are going to compare, the open source re-
alXtend Tundra SDK [6] and the Union, a proprietary closed
source product1. Both are relatively high-level platforms for
networked games and bear several interesting similarities and
differences for this study. Both are specifically designed for
networking, which is exposed to the developer at an abstract
application level. That is, the developer and the game do
not have to know anything about sockets or network hosts.
Instead, an abstract container object is provided (Room in
Union, Scene in Tundra) and the game application logic listens
to events from the container, for example when a new client
joins the shared session/space. Also, both platforms provide
an automated mechanism for synchronizing shared state over
network. The shared state is stored in special attributes (objects
of type Attribute) residing in the container (in Union directly in
the Room object, in Tundra in the Components of the Entities
in a Scene). The attributes are automatically shared among all
participants, and notifications are provided for parties that have
subscribed to be notified of changes. This way it is simple to
for example set the game scores on the server, and show it in
the client GUIs.

However, the two platforms also have fundamental differ-
ences and we discuss how they manifest in the implementation
of the Pong game. TundraPong2 was implemented by the
leading author of this paper and an independent developer
in two sessions totaling about six hours. UnionPong3 was

1http://www.unionplatform.com/

downloaded from the Union website, where it is available
as a tutorial example. While TundraPong is a script running
atop the Tundra platform, UnionPong is a client application,
to which networking functionality has been added by using
Union’s Reaktor Flash library. TundraPong utilizes a complete
static scene datafile, where the game logic moves objects
around. It runs on an existing client-server system, and utilizes
several default components of the platform, most notably the
data defining visual appearance and spatial instantiation and
movement. In contrast, UnionPong not only has code to create
the appearance of the game court (as it is called in Court.as),
but also to define the data required for the spatial movement
of an object (PongObject has x, y, direction, speed, width
and height). In TundraPong, the predefined built-in Placeable
component contains the position and the Rigidbody component
contains shape information for collisions and speed vector for
movement.

Thus, it is clear from the outset that UnionPong is more
complex, due to the game code containing a much larger
proportion of the implementation of the functionality. The
upcoming API complexity analysis is still useful as it helps to
answer the questions at hand: a) how the two APIs succeed
in hiding the complexity from the developer and b) how our
tool succeeds in evaluating the relative complexity of the two
APIs.

C. API Complexity Data
The complexity metrics of the two Pong implementations is

presented in Table 1. We first discuss the OP values provided
by our tool. As anticipated, TundraPong has clearly smaller
OP values. For TundraPong the OP data is extracted from
the single Javascript source file (assets/game.js) that contains
both client and server functionality in two respective classes,
with GUI and minimal game session management. UnionPong
has separate client and server source code files in different
languages using different libraries. Therefore, to facilitate
more equal comparison, for TundraPong we also provide the
OP data for the client only, even though it is included in the
same source code file.

For UnionPong the OP data is calculated for all 14 client
side ActionScript files and for selected 8 classes related
to networking (GameManager, GameStates, KeyboardCon-
troller, PongClient, PongObject, RoomAttributes, RoomMes-
sages, UnionPong). The excluded classes cover GUI, the
2D scene implementation and general settings and utilities
(clamp, ClientAttributes, Court, HUD, Rectangle and Set-
tings). KeyboardController is included because it sends remote
control messages from the player to the server (modifies
client.paddle’s attributes and says client.commit()).

UnionPong’s Java server component (PongRoomMod-
ule.java) contains two classes: PongRoomModule (implements
Module, Runnable) and PongObject, which is basically a
duplicate of the same class in the client. As our OP data

2https://github.com/realXtend/doc/tree/master/api_complexity/
PongMultiplayer

3http://www.unionplatform.com/?page_id=1229

47

TABLE I
COMPLEXITY METRICS FOR THE TWO PONG IMPLEMENTATIONS

metric
Tundra Pong Union Pong
Full Client Client Full Client Net Server

LoC 361 115 565 420 281
|C| 2 1 14 8 2
CP 75 27 180 140 75
MP 103 63 196 175 87
OP 178 90 376 315 162

ÂCyclom. 35 16 58 49 -
max Cyclom. 11 11 11 11 13

Maint.Idx. 100 105 119 116 -

extraction tool does not yet support Java, we collected the
OP data from the server component manually.

Overall, the OP values appear useful for characterizing the
overall complexity. The values seem to reflect the function-
ality that the application needs to cover with its own code,
versus the ready-made functionality provided by the platform
— complete scene geometry, physics and basic client-server
functionality in Tundra.

Regarding the values from the JSComplexity tool, the cyclo-
matic complexity is fine-grained, scoring points for individual
functions. It is relevant as the actual programming work is
eventually done in functions, whereas class structures and such
are only containers for code, after all. The aggregate cyclo-
matic complexity value is not very useful as it is simply a sum
of the values of individual functions. That is, even the simplest
functions with the minimal complexity value of 1 increase the
sum, thus the aggregate value tells more about the size of the
codebase than its complexity. The aggregate cyclomatic com-
plexity values correlate with Sneed’s class points (CP) as they
involve also operation count. The real usefulness of the cyclo-
matic complexity is in identifying peak values, i.e. individual
functions with high complexity. Interestingly, the maximum
cyclomatic complexity value of 11 occurs in a similar func-
tions in both reference implementations: TundraPong’s Game-
Server.updateGame, GameClient.onServerData and Union-
Pong’s GameManager.updateBall. These functions implement-
ing the basic logic of ball movement and bouncing are indeed
quite similar. This alludes that the complexity of the actual
game mechanics is quite equal in both implementations. This
in turn suggests that the two platforms do not differ much with
respect to the complexity of basic mechanics such as moving
objects despite the software implementations being quite dif-
ferent. The same maximum cyclomatic complexity value of
11 in the TundraPong client side function onServerData is
just a coincidence: the complexity is due to the game session
handling commands being made with JSON and handled
in if blocks in a single function. But again, the equivalent
updateBall function implementing ball movement, bouncing
and boundary checks in the UnionPong server has the highest
cyclomatic complexity value of 13.

Finally regarding the maintainability indices it is worth-
while to note how the values are better for the otherwise

larger and more complex Union Pong implementation. This
is due to the different programming styles of the reference
implementations. TundraPong has a smaller number of larger
functions yielding a higher maintainability index. In contrast,
UnionPong has many minimal classes and small functions
resulting in a low index. TundraPong’s maintainability index
of 100 is still well above the 65 threshold proposed by Oman
et al. In any case, these partly contradicting complexity values
highlight how the reference implementations should be as
comparable as possible in terms of structure and programming
style, to leave the API as the only potential source for
the complexity. We propose such carefully crafted reference
implementations to be made in future work.

D. UML Diagrams

Figures 1 and 2 show the UML diagrams generated from
the OP data by our tool for subsequent manual verification of
the analysis and the API complexity.

Fig. 1. The two classes in TundraPong game.js.

Fig. 2. The 13 classes in UnionPong client side ActionScript.

48

V. DISCUSSION

A. Interpretation and Validity of Object-Point Values

The fact that UnionPong obtains much higher OP values
indicating a more complex API does not mean that the Union
platform would be somehow inferior. Instead, it highlights the
nature of game development at a different abstraction level. As
we discussed in Section IV.B, the platforms achieve the basic
functionality of the Pong game, such as synchronizing object
movements and ball collisions and bounces, in different ways:
UnionPong uses game specific messages, whereas TundraPong
relies on the built-in functionality of the Tundra platform. Oth-
erwise, the two APIs are very similar regarding networking.
Both have an abstract container for the state, a Room in Union,
and a Scene in Tundra. An application can store own custom
state information as special attributes in the container, and the
system takes care of automatically synchronizing changes to
the state information. Both use callbacks heavily, for example
to listen to new clients entering the service (an event of Room
in Union’s Reaktor and in the RoomModule on the Union
server separately, an event of the Server core API object in
Tundra server) and to attribute changes received from the
network. They both also allow sending simple ad-hoc custom
messages: Tundra uses them for game events such as informing
of a victory with the associated data; UnionPong uses them
for networking, including also paddle and ball movements,
which Tundra does automatically. These similarities indicate
that the OP analysis effectively captures the aforementioned
differences in the scope and the abstraction level of the
platforms.

Looking at the OP data and considering the OP method, our
interpretation is that it succeeds in illustrating the difference
in scope and abstraction level between the two codebases.
We have to ask whether the OP method does that better
than some other, perhaps simpler, metrics would do. From
previous research we know that the OP method does succeed
in identifying complexity that a simple LoC metric would miss
[4]. Our data seems to support that same conclusion, as the
LoC measure would give even larger complexity difference
between the two implementations (115:565 for full clients).
Based on qualitative analysis, we think that the smaller relative
difference indicated by the OP data is more appropriate. Even
though UnionPong client needs to do more, and especially has
many more classes, most of the classes are very simple and
most of the source code is not very complex. Considering only
static class information, the difference would be even greater
(27:180). TundraPong has relatively long methods and a lot
of function calls, which lead to relative high MP count in the
dynamic analysis (63:196). We think that changes the final
OP score to a realistic ratio (90:376). Based on the OP data
we cannot really say whether the tool and the OP method
miss something essential in the API complexity analysis. For
example, the OP method does not take into account anything
specific to networking: the need to think of connections,
defining and sending network messages etc. They are of course
accounted for as normal data definitions and function calls, but

would some networking specific metric, for example for the
number of messages, be more useful instead? Arguably, they
present an additional complexity that the game developer has
to manage.

B. Built-in Platform Logic vs. Custom Application Logic

As TundraPong shows, implementing a game on an rich
platform such as Tundra can require a comparatively small
amount of work. However, custom game specific solutions
for game object data, network messages, movement in-
ter/extrapolation and collisions can easily be more powerful
and even required. For example, if the game takes place
on a small spherical world, a mini planet, Tundra’s built-in
Euclidean movement techniques become suddenly much less
useful. Therefore, the logic underlying the Union platform and
other similar smaller libraries is sound. Game developers often
need custom solutions, so the platform just provides the lower
level tools for messaging and stays out of the way for the rest.
However, optimizing and perfecting for example movement
synchronization is not trivial, thus it is often useful to have a
mature shared implementation for common operations.

C. Complexity Metrics in Estimating Ease of Development

Hatton criticized that software complexity metrics, includ-
ing cyclomatic complexity, have poor correlation with actual
reported defects in large software projects [18]. He argued
that none of the various complexity metrics gives any better
prediction than the simplest metric of lines of code. In our
study, however, the objective is not to predict defects but to
estimate development effort and ease of development using
particular APIs.

The recent metrics for the cognitive complexity of software
may thus be suitable, for example the Cognitive Information
Complexity Measure (CICM) reportedly satisfies all the crite-
ria set for an effective software complexity measure [19]. It
draws from research in cognitive informatics and is based on
calculating basic control structures (BCS) from the code and
assigning cognitive weights for those constructs. The studies
on cognitive complexity focus on comprehensibility of the
software when the source code is read. We assume that it
correlates with the ease of developing that piece of code as
well. However, we have been unable to find any automated
tools to calculate CICM or other BCS based metrics. Also,
their objective is to analyze complexity within individual
functions, similarly to cyclomatic complexity, whereas in API
evaluation the overall program structure may be more relevant.

D. Limitations and Future Work

The Pong game used as the minimal reference of a net-
worked multiplayer game in this study is very simplistic. Much
of the complexity of real networked games, and especially
large scale commercial MMOGs, lies in areas not addressed
by this study: service reliability, availability, restorability and
scalability [1]. Networked programming in general is also
typically complex due to the need to handle several kinds
of error situations, such as lost data, dropped connections

49

and conflicts from simultaneous actions. The Pong reference
implementations of this study may well be limited in that they
do not handle such issues in the way a production quality
game must handle, which probably increases the complexities.
However, both Pong games are built on very high-level net-
worked game platforms, which strive to hide the complexity of
networking from the developer. Whether and how they really
achieve that cannot be determined from the data of this study,
but would require a different analysis.

In future work the shortcoming of relying on too simple
reference games in API complexity analysis could be ad-
dressed in two ways. First, we could analyze codebases of real
production games. However, typically a particular game exists
only as a single implementation, which prevents comparative
analysis. Nevertheless, the analysis could still provide valuable
insight into assessing the evolution of the complexity of the
game, and the correlation of the complexity with the monetary
expenses of the development effort. Second, we could develop
a more complex reference game and ensure its completeness.
Such a reference game should be carefully specified to cover
all relevant areas of networked gaming, but still remain small
enough to allow implementation within a realistic timeframe.
Existing canonical implementations may provide a starting
point, as for example several commercial networked 3D first-
person shooter (FPS) games have been open sourced (Quake,
Cube2), and at least one high-level platform already features
a FPS as a tutorial (Torque3D).

We propose a collaborative effort, similar to the
TodoMVC.com for web platform comparisons [12], to work
on reference games for API evaluation purposes. We suggest
using refgames.org for the purpose and provide these example
Pong’s and our OP tool there as seed material.

VI. CONCLUSIONS

Our study shows that software complexity metrics can be
useful aids in comparing APIs but so that human judgment is
exercised in assessing the plain numerical complexity values.
The different metrics give useful information on the overall
characteristics of code bases and can also highlight poten-
tial complexity hotspots for further study. A collaboratively
composed collection of reference games on various platforms
seems like a fruitful way to get rich API comparisons in the
future.

ACKNOWLEDGMENTS

The authors would like to thank Jonne Nauha from Ad-
minotech for implementing most of TundraPong and providing
the source for research purposes. We also thank creators of the
Union platform for providing their Pong example online, and
for the nice and interestingly different platform overall. We
are greatful for the anonymous reviewers for insightful and
helpful comments. This work was supported by the NIMO
(Nordic Interaction and Mobility Research Platform) project

funded by the EU Interreg IVA North program, and by the
Tekes Chiru project.

REFERENCES

[1] M. Henning, “API design matters,” Commun. ACM, vol. 52, no. 5,
pp. 46–56, May 2009. [Online]. Available: http://doi.acm.org/10.1145/
1506409.1506424

[2] M. Cataldo and C. R. de Souza, “The impact of API complexity
on failures: An empirical analysis of proprietary and open source
software systems.” [Online]. Available: http://reports-archive.adm.cs.
cmu.edu/anon/isr2011/CMU-ISR-11-106.pdf

[3] T.-Y. Hsiao and S.-M. Yuan, “Practical middleware for massively
multiplayer online games,” IEEE Internet Computing, vol. 9, no. 5, pp.
47–54, 2005. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/MIC.2005.106

[4] S. Sobernig, P. Gaubatz, M. Strembeck, and U. Zdun, “Comparing
complexity of API designs: an exploratory experiment on dsl-based
framework integration,” SIGPLAN Not., vol. 47, no. 3, pp. 157–166, Oct.
2011. [Online]. Available: http://doi.acm.org/10.1145/2189751.2047890

[5] P. Booth, “Jscomplexity.org,” 2012. [Online]. Available: http://
jscomplexity.org/

[6] T. Alatalo, “An entity-component model for extensible virtual worlds,”
IEEE Internet Computing, vol. 15, no. 5, pp. 30–37, 2011.

[7] M. Barth, “API evaluation – an overview of API evaluation
techniques.” [Online]. Available: http://dev.roleplaytalk.net/files/
publications/api-evaluation.pdf

[8] J. Gerken, H.-C. Jetter, M. Zöllner, M. Mader, and H. Reiterer,
“The concept maps method as a tool to evaluate the usability
of APIs,” in Proceedings of the 2011 annual conference on
Human factors in computing systems, ser. CHI ’11. New York,
NY, USA: ACM, 2011, pp. 3373–3382. [Online]. Available: http:
//doi.acm.org/10.1145/1978942.1979445

[9] U. Farooq, L. Welicki, and D. Zirkler, “API usability peer reviews:
a method for evaluating the usability of application programming
interfaces,” in Proceedings of the 28th international conference
on Human factors in computing systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 2327–2336. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753677

[10] C. R. B. de Souza and D. L. M. Bentolila, “Automatic evaluation of
API usability using complexity metrics and visualizations,” in ICSE
Companion, 2009, pp. 299–302.

[11] H. M. Sneed, “Estimating the costs of software maintenance tasks.”
in ICSM. IEEE Computer Society, 1995, pp. 168–181. [Online].
Available: http://dblp.uni-trier.de/db/conf/icsm/icsm1995.html#Sneed95

[12] A. Osmani, “TodoMVC: Helping you select an MV* framework.”
[Online]. Available: http://www.todomvc.com/

[13] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework
hotspots and coldspots via mining open source code on the web,” in
Proceedings of the 2008 23rd IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 327–336. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2008.43

[14] A. Henrich, “Repository based software cost estimation.” in DEXA, ser.
Lecture Notes in Computer Science, A. Hameurlain and A. M. Tjoa,
Eds., vol. 1308. Springer, 1997, pp. 653–662. [Online]. Available:
http://dblp.uni-trier.de/db/conf/dexa/dexa97.html#Henrich97

[15] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[16] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Software Maintenance, 1992. Proceerdings., Confer-
ence on, nov 1992, pp. 337 –344.

[17] G. Wikstrand, L. Schedin, and F. Elg, “High and low ping and
the game of pong: Effects of delay and feedback,” 2006. [Online].
Available: www.cs.umu.se/research/reports/2006/041/part1.pdf

[18] L. Hatton, “The role of empiricism in improving the reliability of future
software.” [Online]. Available: http://www.leshatton.org/wp-content/
uploads/2012/01/TAIC2008-29-08-2008.pdf

[19] D. S. Kushwaha and A. K. Misra, “Improved cognitive information
complexity measure: a metric that establishes program comprehension
effort,” SIGSOFT Softw. Eng. Notes, vol. 31, no. 5, pp. 1–7, Sep. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1163514.1163533

50

