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Abstract—In this paper we study traffic patterns in a large
municipal WiFi network and in particular those of the most
bandwidth hungry application, viz. YouTube, for which we
provide a detailed analysis of demand in different geographical
areas and over time. We consider the possibilities to reduce
network traffic and increase Quality of Experience (QoE) by
serving repeated requests for YouTube videos from caches placed
either at the network head end, at the wireless access points, or in
the user devices. Our data confirms that a significant part of the
YouTube traffic can be served by such devices and that there exists
a potential to optimize caching performance by exploiting the
content demand locality. We also discover a previously unknown
pattern of periodicity in content demand and present a simple
example of how to exploit this in cache design.

Keywords—Traffic analysis, wireless networks.

I. INTRODUCTION

According to several recent studies, the use of different
services delivered over-the-top is increasing rapidly in both cel-
lular and fixed networks [1], [2]. The largest category in terms
of traffic volume is video which thus is the main driver behind
the data traffic explosion. The situation is problematic for
network owners as the transmission capacity is consumed by
applications that only generate small (volume based) revenues.
Various ways for optimizing the use of networks are therefore
being studied, such as content caching in network elements
or terminal devices. Understanding the usage characteristics
of networks and applications is critical for the design of such
optimization mechanisms.

There are a lot of studies concerning the high-level applica-
tion usage of wireless and wired networks. In [3], the authors
present a thorough analysis of the Google WiFi network
deployed in Mountain View, California. Similar to our ap-
proach, they consider differences between distinct geographical
locations in their paper, but ideas on exploiting the differences
in optimization of use of networks are not presented in the
paper. Other larger-scale studies of WiFi networks have mostly
been conducted in campus networks such as in [4], [5] and [6].
Traffic characteristics of fixed residential broadband networks
have been reported e.g. in [7] and [8].

Most of the previous works on characterizing the content
demand of network applications have concentrated on Web
traffic such as [9] and [10]. More recently, the interest has
moved to file sharing ([11], [12], [13]) and finally to multime-
dia applications such as YouTube ([14], [15], [16], [17], [18]).

The majority of these focus on the content usage characteristics
in wired networks, while the information concerning wireless
networks is limited. In [19] and [20], the web browsing
patterns of mobile users were analyzed, and the locality of
web requests within a WiFi network was studied in [21]. Our
paper contributes to this line of work by studying the usage of
the most popular individual application, YouTube, in a large
public WiFi network. In addition, we split our user base in a
unique way between users in the city area, at the university
campus, and in the municipal schools. It should be noted, that
our focus is on finding out behaviour that could be considered
for exploitation while a discussion of the business potential of
such exploitation is out of the scope of this paper.

The combination of large scale (1441 access points, 60315
user devices) and versatile profile (outdoor and indoor cover-
age in city centre, municipal buildings, campuses, and private
properties) of the network and the rich data collected over
a relatively long period of seven weeks differentiates our
paper from previous studies in terms of its experimental
setting. Moreover, our findings on differences between usage
environments have not been presented in other studies. The
main contribution of our paper is, however, the discovery of
periodicity of content demand. This has potential to provide
several exploitation possibilities in network optimization once
studied further.

II. NETWORK AND DATA

Our analysis is based on measurements performed in a
public WiFi network located in the Oulu region in Finland
during seven weeks between November 2012 and January
2013. In the following subsections we describe the network
and our measurement methodology.

A. The panOULU Network

The panOULU (public access network OULU)1 network
is a regional municipal WiFi network located in the Oulu
region in northern Finland. The network is provided jointly
by a consortium of municipalities, public institutes in research
and education, and private companies. It provides free and
open wireless Internet access to anyone in its coverage area.
The joint consortium was established in 2003, and the network
has been expanding since then to have indoor coverage in
basically all public buildings in the city of Oulu, outdoor
coverage in downtown Oulu and other selected locations,

1http://www.panoulu.net/
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such as sport centers. In addition, the network coverage has
also expanded to nearby towns around the city and private
companies willing to provide wireless connectivity to their
customers and visitors [22].

At the moment of this study, the network had 1441 access
points (APs) representing a mixture of IEEE 802.11a/b/g/n
technologies and manufactured by Cisco, Siemens, Strix and
Linksys. Providers have recently been updating their WiFi
zones from stand-alone 802.11a/b/g configuration to controller
based 802.11n configuration. While downtown Oulu and a few
other areas are blanketed with Strix OWS series multi-radio
mesh APs, coverage in other parts is provided in a hot spot
manner. All APs advertise the same SSID (“panoulu”) such
that they appear to be part of one large wireless network from
the users’ point of view. The hot spots and mesh root APs
are connected to an Ethernet-based aggregation network with
fixed xDSL or Ethernet links. The network is connected to the
public Internet via a gateway provided by a local ISP and there
are no limitations or restrictions on the use of the network.

B. Data Collection

We collected three principal types of data for the purposes
of this study, overall application statistics, YouTube packet
traces and session statistics, over a period of 49 days from
November 2012 to January 2013.

First, the overall statistics of application usage in the net-
work were gathered by connecting a commercial PacketLogic
PL8720 Advanced DPI (deep packet inspection) system from
Procera Networks 2 to the Internet gateway. Although the DPI
system is designed for bandwidth management and policy
enforcement, we used it as a passive measurement probe.
The system uses a proprietary traffic identification engine to
generate statistics about network usage and to accurately filter
network traffic in real time. The system was configured to
calculate statistics of application usage in terms of bandwidth
consumption. According to the statistics, 32% of the bytes
transmitted in the network were generated by streaming media
applications. YouTube was by far the most popular individual
application in this category, hence we focused in YouTube
traffic characteristics in this work.

Second, the necessary parts of all YouTube flows were
collected with the same commercial tool as the application
usage statistics, but with another parallel configuration. For the
purposes of our analysis, we configured the system to capture
the raw bytes belonging to the beginnings of all YouTube
sessions into pcap files and to store the result on a disk.

Third, a centralized server logs different sessions in terms
of user device id, start and end times, and AP ids. As the
panOULU consortium is based on voluntary participation, it
does not dictate how its members should implement their WiFi
zones and what kind of usage data they are required to report.
Consequently, session data is only available for a subset of
all APs. In this study we use session statistics of about 5 000
000 sessions recorded during the measurement period at three
different categories of APs (geographical areas) totalling 606
APs:

2http://www.proceranetworks.com/

• Campus: 110 APs located at the main campus of the
University of Oulu 5 kms north of downtown Oulu.

• City: 98 wireless mesh APs providing outdoor cover-
age in downtown Oulu and 289 APs in public munic-
ipal buildings around the city (excluding schools).

• School: 109 APs located in schools around the city
of Oulu. The schools include elementary schools, with
pupils aged between 6 and 15 years, and high schools,
with students aged between 15 and 18 years.

III. YOUTUBE USAGE

Our analysis of YouTube usage is based on capturing the
beginnings of all YouTube flows on a disk and correlating
these captures offline with the session database. User privacy
is protected in the process by using hashed identifiers. We are
able to bind video views to individual APs for all sessions in
the database. In more detail, we use the AP the user device
was associated to when the video was requested and, although
we note that user movements or varying coverage may have
resulted in one or more changes of APs before the video was
completed (or interrupted), we also note that YouTube video
clips (and viewing times) are typically quite short hence we
assume that this does not have a major impact on our results.

Moreover, in addition to the AP, we recorded the YouTube
content identifiers and the user agent information, which
were available for all videos viewed during the measurement
period. In more detail, we examined HTTP GET requests for
media content to YouTube and identified videos from the 16
hexadecimal digit identifiers in the “videoplayback” field and
terminal types from the text values in the “User-Agent” field.
Altogether our measurement covered over 200,000 video views
out of which we were able to locate roughly 50,000 with city
APs, 20,000 with campus APs and 20,000 with school APs.
The rest of the videos were viewed with APs not connected
to the session database (due to technical or administrative
reasons), so they are not included in the results comparing
different usage environments.

We start our analysis by looking at the temporal aspects.
Figure 1 shows how the YouTube views are distributed over
the different days of the week. As can be expected, the number
of views at campus APs and school APs is the lowest during
the weekend when there are no classes and the highest on
Mondays when weekend findings are shared between friends.
In the city APs, this effect is not visible but the differences
between the number of views between different days are much
lower, although we note that the number of views is the highest
on Fridays and the lowest on Sundays.

We remark that these variations can be caused by (i)
varying number of requests per user, (ii) varying number of
requesting users or (iii) both. A further investigation shows
that, while the average number of views per active user seen
requesting at least one video during a day is around 6 in all
AP categories during the weekdays, this number does in fact
increase for campus and school APs during weekends but is
almost constant in the city, cf. the dots in Figure 1. On the other
hand the number of users (Table I) again is almost constant
during week days but does in fact decrease for campus and
school APs during weekends. Thus we draw two conlusions:
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TABLE I. FRACTION OF USERS PER DAY OF WEEK

AP category Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Campus 0.22 0.18 0.20 0.16 0.17 0.04 0.03
City 0.16 0.15 0.15 0.14 0.17 0.13 0.10
School 0.22 0.20 0.20 0.16 0.18 0.02 0.02
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Fig. 1. YouTube use, days.

first, the relatively constant demand at city APs is a result
of relatively constant number of users and relatively constant
demand per user; second, the variations in demand at school
APs and campus APs are a result of a noticeable increase in
demand per users and an even more pronounced decrease in
the number of users.

While campus and school usage resemble each other with
respect to week days, there is a significant difference between
them with respect to peak hours (Fig. 2); the campus peak
occurs between 11 a.m. and 4 p.m. while the school peak is
between 9 a.m. and 2 p.m. For the city we note that the lower
variation with respect to week days also applies to variation
with respect to hours with a less pronounced but extended
peak period between 12 a.m. and 7 p.m. in the city. The
average amount of video views for each user seen requesting
at least one video during an hour is around 4 for all categories
during daytime while average nighttime users are more active,
in particular those at APs in schools or at the campus.

As our YouTube traces include all data from the beginning
of each YouTube flow, we are able to record the user agent
string from the HTTP request. Using the HTTP user agent
information, we categorize the user devices as either PCs or
mobile devices. The data also includes a few other devices
such as TV sets and game consoles, but we have excluded
them from the analysis because their share of the total traffic is
insignificant. Figure 3 shows how YouTube usage varies over
the week for both device categories. PC usage seems to be
more stable than mobile usage and for the latter we note that
weekday usage is about double the weekend usage. Similarly,
Figure 4 shows how YouTube usage varies over the day for
both device categories. Mobile usage peaks earlier in the day
than PC usage, and a deeper analysis shows that this is due to
heavy usage of mobile devices in schools during school days
and school hours, see Figures 5 and 6, while no such peaks
are seen for APs in the city or on the campus. A general
observation (not shown) is that PCs dominate during the night
hours in all three environments.
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Fig. 2. YouTube use, hours.
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Fig. 3. YouTube use, device types, days.

IV. POTENTIAL TO SERVE YOUTUBE REQUESTS BY

CACHING

We commence our exploration of the possibilities of
serving YouTube requests via caching by analysing content
popularity in the YouTube traffic. At this stage we look at the
statistics of the whole data but we shall include finite cache
size effects later in this section.

Plotted in log-log scale, the number of requests for the
most popular items ordered according to their popularity,
the Figure 7 resembles a Zipf distribution, which implies
that a finite sized cache could serve a significant amount
of YouTube requests. This observation is well in line with
literature (e.g. [15]).

To further assess the potential gain from caching, we
plot the amount of repeated requests for the same content in
Figure 8. When considering all YouTube video views in the
network, 27% of the video files were viewed at least twice
and the most popular video was viewed 513 times. Within the
smaller categories of campus, city and school, the amount of
videos viewed only once increases, but even in the campus
APs, with the lowest similarity between the requests, more
than 18% of videos were viewed at least twice.

Next we consider the level of individual user devices. We
define a user device as a unique pair of a MAC address
and a user-agent which corresponds to a natural position
for a possible content cache. Figure 9 shows the CDF of
repeated views of a particular YouTube video on a particular
device. We see that over 16% of all requests are such “double
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Fig. 4. YouTube use, device types, hours.
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Fig. 5. YouTube use, days and device types, school.

repeats” (same user and same content). Also in this case,
restricting the examination to the separate AP categories yields
smaller amounts of repeated requests (since only repeats in
the same AP category count) and the order of AP categories
is interestingly the same as previously. The most repetitive
requests are made by users connected to city APs and the
least repetitive ones by those connected to campus APs.

We define three measures of content cacheability, viz. the
total hit rate hT (the fraction of requests that could have been
served from a cache), the local hit rate hL (the fraction of intra
user hits, i.e. hits that could have been realised by local caches
inside the devices) and the global hit rate hG (the fraction of
inter user hits, i.e. hits that must be realised by global caches
outside the devices). Note that the total hit rate thus is the
aggregate of local hits (intra user hits that could have been
made inside the devices) and global hits (inter user hits that
must be made between the devices). In formal notation the
total hit rate is defined as

hT = 1−
U

T
, (1)

where U and T are the number of unique video requests
and the total number of video requests respectively, the local
hit rate is defined as

hL = 1−

∑
∀u Uu

T
, (2)

where Uu is the number of unique video requests from user
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Fig. 6. YouTube use, hours and device types, school.
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Fig. 7. YouTube use, number of requests per video.

u, and the global hit rate is defined as

hG = 1−

∑
∀u Uu − U

T
. (3)

These measures count the cumulative hit rate starting from
an empty cache. To assess the cache performance in normal
operative state, we also calculated the total hit rate for the last
week of measurements as

hT′ = 1−
U ′

T ′
, (4)

where U ′ is the number of unique video requests during the
last week of measurements, i.e. the number of videos never
seen in our trace before the last week of measurements, and
T ′ is the total number of video requests during that week.

Table II shows the caching gains calculated over all our
data, over user device categories, and over AP categories.

The results show that, although larger groups predictably
provide higher hit rates, small but in some sense homogeneous
groups can also provide high hit rates, cf. the school category
which despite having the smallest number of users exhibits
the highest hit rate. One possible explanation in this case is

TABLE II. CACHING GAIN POTENTIAL

Category Users Videos Requests hT(h
T′ ) hL hG

All 11893 117912 207099 0.43 (0.48) 0.23 0.20

PC 6735 92705 157154 0.41 (0.46) 0.23 0.18
Mobile 4896 29606 47069 0.37 (0.42) 0.24 0.13

City 4489 33431 49378 0.32 (0.37) 0.21 0.11
Campus 1774 14440 19954 0.28 (0.32) 0.22 0.06
School 1711 13196 19589 0.33 (0.37) 0.22 0.11
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Fig. 10. Hit rate for LRU caches in terminals.
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Fig. 11. Hit rate for LRU caches in APs.
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Fig. 12. Hit rate for LRU cache at the Internet edge.
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Fig. 9. YouTube use, CDF of requests per video per user.

that school kids may be more likely to replay videos to their
friends.

Above, our analysis was based on an assumption of an
infinite size cache. For more realistic results, we ran the
recorded YouTube requests through (simulated) simple LRU
(Least Recently Used) caches, all of which are assumed to
store a defined number of video clips and discard the least
recently used clip when a new clip is stored and the cache
is full. Figures 10, 11 and 12 show the results in terms of
traffic reduction by deploying these caches either at terminals,
at WiFi APs, or at the Internet edge, respectively. Cache sizes
are expressed as percentages of the number of unique video
clips per day and unit at which the cache resides in order to

visualize differences related to specifics of separate categories
rather than the sizes of these categories. Thus, e.g., cache size
10 in a terminal corresponds to a cache that can store 10% of
the average number of unique video clips requested per day
by a terminal, and cache size 1000 in an AP corresponds to a
cache that can store 1000% of the average number of unique
video clips requested per day at an AP.

Overall, by adding a sufficiently large YouTube cache into
the network, 48% of the video requests could be served locally
and, similarly, by adding sufficiently large YouTube caches to
the user devices, more than 23% of requests could be served
without using the network at all. The results thus show that
simple LRU caches with a storage capacity equivalent to the
number of unique video clips consumed in ten days will be able
to deliver hit rates close to those calculated for infinite caches.
This result is well in line with those presented in [14]. When
comparing the results between different categories in Table II,
we see that interestingly the global hit rate of PC users is
much higher than that of mobile users, implying that there are
more similarities between PC users as a group than between
mobile users as a group. On the other hand, the requests of
mobile users seem to be more self-similar, favouring deploying
caches in mobile devices. This is also visible in Figure 10.
With respect to AP categories, the best performance is obtained
for the campus category (Fig. 11) while the performance is
relatively poor compared to the other categories for a cache at
the Internet edge (Fig. 12). This suggests that the consumed
content differs a lot around the campus area, but there is a
noticeable similarity between the users sharing the same AP.
Further, we note that the cacheability results for the school
category grow almost linearly with the size of the cache, what
we interpret as a sign of homogeneous content consumption
among the school kids.

After observing spatial demand locality, we investigate
temporal demand characteristics. We start with an assumption
that video requests during certain hours may have more in
common with requests during the same hours (but possibly
different days) than with requests during other hours. To
test this demand locality in time, we take random groups of
20,000 video requests from hour-of-day based subgroups of
all requests, run them through our simulated LRU cache, and
compare the results with similar sized random groups taken
from all hours of the day. Figure 13 shows the cache hit ratios.
All time restricted subgroups show higher hit ratio than the
results for all data. We take this as a sign of locality of demand
not only in space but also in time.
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To understand this further, we modify our test by removing
same day same user repeated requests to focus on the periodic-
ity of demand between days. Figure 14 presents the results for
the modified case. It is seen that the differences in cache hit
ratio between the time-of-day based subgroups and the whole-
day data are smaller than before, but still we see a benefit from
splitting the cache in time and thus the locality in time is not
only due to bursts of repeats from single users but from views
by different users at the same time and/or by the same user
or users at different days. We assume that the periodicity of
the demand may be at least partially caused by users having
regular active periods which differ between users.

To examine this assumption, we define for each six hour
time period p, (e.g. the hours between 6 a.m. and 12 p.m. and
so on) a reference group of users Gp who were active during
that period in the first week of our measurements and another,
reference group of the same number of randomly selected
users Ḡp who were active outside period p during the same
period. For each period p we then compute the fraction of
users that are seen during p in over the remaining six weeks
of our measurement. The results are shown in Table III and
we see that, e.g., users who were active in the night (0–6)
during the first week are more likely (46%) to be active in the
night during the remaining weeks than random users seen at
other times (4%). A similar difference can be seen for evenings
(18–24) while this pattern is less evident for mornings (6–
12) and afternoons (12–18). It is thus clear that the periodic
content demand to some extent indeed can be explained by

TABLE III. USER PERIODICITY

Group 0–6 6–12 12–18 18–24

Gp 0.46 0.06 0.04 0.13
Ḡp 0.04 0.04 0.04 0.04

periodic user activity. We conclude that, with proper ways
of distributing different types of content between different
physical servers, it should be possible to save power by running
a smaller number of dedicated servers during nights without
sacrificing hit rates.

Finally, we demonstrate the exploitation of content demand
periodicity with a simple example. We modified our LRU
cache implementation by reserving parts of the memory for
the most popular content for that particular time of day. The
hours of a day are split into four six hour periods, and the
most popular video clips for each period are copied to the
cache at the beginning of the period (top videos of other
periods are stored outside of the cache). When video clips
are being requested from the cache, the memory containing
the top videos from the previous day’s corresponding period
is checked first and if there is no match, the LRU part of
the cache is used in the normal way. Figure 15 presents the
performance of this modified LRU cache. For simplicity, we
fixed the total size of the cache to the amount of unique video
clips requested per day on average during our measurement
period, and the figure can be compared to Figure 12 with
the basic LRU operation. The results show that with optimal
memory allocation between time-based top cache and basic
LRU memory, an increase in cache hit rate can be achieved.
The maximum hit rate of 24.1% was achieved with 87.5% of
memory allocated to basic LRU. This improvement of less
than 1% in hit rate in comparison to allocating the whole
cache to basic LRU can be considered minor, but with a more
sophisticated way of using the periodicity of demand, higher
benefit could potentially be obtained. Moreover, the hit rate is
typically not the only parameter to look at in cache design.
This kind of modified LRU could be useful for example if the
cache had separate fast and slow memory, and the top content
of the hour could be served faster to provide better QoE.

V. CONCLUSIONS

In this paper we have studied YouTube usage in a large mu-
nicipal WiFi network. During our seven week data collection
period, we collected information related to more than 200,000
video views using over 600 separate WiFi APs. We presented
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the daily and weekly YouTube usage patterns for three different
geographical areas and looked at the differences in YouTube
usage between different user device types. The variance of the
amount of YouTube use was much lower on both daily and
weekly level in the city APs than in campus and school APs
in which the user groups and their schedules are more uniform.
Similarly, PC usage was seen to be more stable than mobile
use, and the night-time users on average used YouTube heavier
than daytime users.

We also looked at the similarity between YouTube requests
and showed that there is a significant potential for saving
bandwidth and improving QoE by caching YouTube content
either at the network head end, at the network access points or
in the user devices. The caching gain potential varies between
the AP categories and according to our results the requests of
city and school users have bigger potential for device caching
than the requests of university campus users. Understanding
the differences in content demand in different environments
could be used to increase caching performance when deploying
local caches.

Finally, as a novel contribution, we discovered periodicity
in the content demand and presented a first, simple example of
exploiting it in cache design. Our findings on content demand
periodicity should be confirmed by further research and ways
of exploiting it should be studied. In this paper our focus
was only in YouTube, but the caching potential and content
demand characteristics of other popular applications should
also be studied in the future.
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