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Abstract—It has been recognized by many researchers that 
accurate bus travel time prediction is critical for successful 
deployment of traffic signal priority (TSP) systems. Although 
there exist a lot of studies on travel time prediction for Advanced 
Traveler Information Systems (ATIS), this problem for TSP 
purpose is a little different and the amount of literature is 
limited. This paper proposes a deep learning based approach for 
continuous travel time prediction problem. Parameters of the 
deep network are fine-tuned following a layer-by-layer pre-
training procedure on a dataset generated by traffic simulations. 
Variables that may affect continuous travel time are selected 
carefully. Experiments are conducted to validate the 
performance of the proposed model. The results indicate that the 
proposed model produces prediction with mean absolute error 
less than 4 seconds, which is accurate enough for TSP operations. 
This paper also reveals that, except for obvious factors like speed, 
travel distance and traffic density, the signal time when the 
prediction is made is also an important factor affecting travel 
time. 

Keywords—travel time prediction; transit signal priority; deep 
learning; deep network 

I. INTRODUCTION 
The segment travel time prediction problem this paper 

focuses on is derived from another problem called active transit 
signal priority. Transit signal priority (TSP) is a kind of traffic 
signal control strategy that gives priority of right-of-way to 
public transit vehicles (buses) to facilitate their pass through 
signalized intersections [1] meanwhile minimums the adverse 
impact on the non-priority traffic streams. This strategy can 
improve the service quality of public transport and thus brings 
many advantages, including attracting ridership to public 
transit, alleviating urban traffic congestion, reducing vehicle 
exhaust emission and benefiting the health of citizens. There 
are four functional components of a TSP system, bus detection, 
priority request generation (PRG), priority request server 
(PRS) and TSP control. They co-work with each other as 
following [2]. The bus detector is installed a distance upstream 
to the intersection. On detection of a bus, the PRG is notified 
with detected vehicle data (identity, location, arrival time, 
passing speed etc.) and then generate a priority request. The 
PRS receives the generated priority request and decides 
whether to grant priority based on the defined conditions. Once 
granted, the TSP controller initiates action to provide priority 
for the bus based on the priority control strategies implemented 
in the system. When a signal is received from the downstream 

bus detector indicating that the bus has cleared the intersection, 
the TSP controller restores the normal signal timing and the 
priority operation is finished.  

There are three most commonly used signal action in TSP 
operation. They are green extension, red truncation and phase 
insertion. According to the predicted arrival time of the bus, 
different action should be activated. To be more specific, if the 
bus is predicted to arrive at the intersection during green phase 
but the left green time is not long enough for the bus to pass 
through, the current green phase should be extended. If the 
predicted arrival time of the bus is at red phase which is just 
prior to the bus green phase, the current red phase should be 
truncated to switch to bus green phase in advance such that the 
bus can go through the intersection continuously. Otherwise 
the bus green phase should be inserted when the bus arriving 
the intersection. From this we can see that a critical issue 
encountered in implementing TSP is to predict the time it takes 
for the bus to travel from the detection location to the 
intersection. If the prediction is not accurate enough, it may 
happen that the bus is granted priority when it is not needed or 
is not granted when it is needed, both of which could produce 
badly adverse impact on the bus or non-priority traffic. 
Suppose that, for example, a bus is detected by the upstream 
detector when the bus phase is green. It is predicted that there 
will be not enough green time when the bus arrives at the 
intersection such that the green extension actin is activated. 
Since the prediction is not accurate, the bus actually arrives at 
the intersection early that the extended green time is not used. 
This granted while unnecessary priority operation makes bad 
impact on the non-priority traffic streams.  

Many researchers and traffic engineers have recognized 
that accurate prediction of bus travel time from the detection 
location to the intersection is the key to success in 
implementing TSP control [3][4]. This can be modelled as a 
travel time prediction problem which many researchers have 
contributed their efforts to. Mori et al. divide these models into 
four categories, naive models, traffic theory based models, 
data-based models, and combined or hybrid models [5]. Naive 
models are simple, and do not need any training or parameter 
estimation. They simply predict the travel time as the most up-
to-date travel time [6], simple filtering or weighting of 
historical travel time [7], or integration of both [8]. Traffic 
theory based models try to recreate the traffic status at each 
time step repeatedly and derive travel times from predicted 
state variables. They are usually implemented in traffic 
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simulation tools, like CORSIM [9], PARAMICS [10], AND 
DynaMIT [11] etc. These models have powerful representation 
ability of traffic details but need more expertise to be built. The 
accuracy of travel time prediction relies heavily on the 
similarity between the recreated and actual traffic situations, 
which is not always assured [5].  

Benefiting from the development of statistics and machine 
learning methods, a lot of data based prediction models are 
proposed. The target of this kind of models is to find an 
appropriate data interpretative structure f and its parameters 
which maps the input and output data with minimal errors. 
Rice and van Zwet use a linear regression model with time-
varying coefficients and the work gives good results [12]. 
Kalman filter method [13] and autoregressive-integrated 
moving average (ARIMA) models [14] are also proved to be 
effective for this problem. Instead of taking the input data 
directly, support vector regression (SVR) method firstly maps 
the input data into higher dimensional space with a specifically 
designed kernel such that the relationship between modified 
input data and target variable is linear [15]. Among those data 
based models, artificial neural network (ANN) is one of the 
most widely explored since its powerful capability of capturing 
nonlinear relationships or patterns underlying the data. There is 
a variety of types of ANNs to be chosen from, including 
conventional multilayer feed forward neural network [16][17], 
counter propagation neural network [18], object-oriented 
neural network [19] and spectral basis neural network [20]. 
Data based models can be easily built by researchers with little 
expertise in traffic theory. But it usually requires much larger 
amount of data to train these models which are not always 
available. And the trained models can only “get used to” the 
study site where the training data are collected As a result they 
are not always transferable to others sites [5].  

To take advantages of different models, they are combined 
to improve the prediction accuracy, which are called combined 
or hybrid models. Xia et al. propose a multistep predictor 
combing a seasonal ARIMA model with and adaptive Kalman 
filter [21]. Zheng et al. build a neural network (NN) model 
whose prediction is combined based on Bayesian rule from two 
single NN predictors, i.e., a back propagation NN and a radial 
basis function NN [22]. In [23], the extended Kalman filter is 
applied to train the state-space neural network which is used to 
predict the urban arterial travel time. There are also researchers 
exploring the integration of neural network with fuzzy logic 
system, like [24] as an example. These combined or hybrid 
models are reported to perform better than conventional single 
predictors in their papers. This could be a promising direction 
in travel time prediction problem, but more and further 
research is needed. 

Most of the existing literature on travel time prediction 
reviewed above is intended for Advanced Traveler Information 
Systems (ATIS). For TSP purpose, the characteristics and 
requirements of the problem are a little different. For ATIS 
application, the task is to predict the travel time of a link, or a 
series of links. But for TSP operation, the prediction space 
span is much shorter, i.e., just from the upstream detector to the 
intersection, which is usually less than 500 meters. Little 
variance in prediction can make a big difference. For this 
reason, the accuracy of prediction must be stricter for TSP 

operation, i.e. within second level, instead of minute level for 
ATIS. Although the amount of literature is limited, there are 
some researchers trying to address this problem. Tan et al. 
propose an optimal a posterior parameter estimation model 
whose prediction is derived from both historical and real-time 
GPS probe data [4]. Li et al. apply the model of Tan et al. to 
their predictive TSP strategy. Traffic simulations suggest that 
this predictive strategy has better performance than 
conventional TSP strategies. Lee et al. develop a microscopic 
traffic simulation model to predict the transit travel time along 
an intersection approach [25]. These work integrate transit 
travel time prediction with TSP in different contexts, but both 
indicate that this is a promising direction for improving TSP 
performance further.  

ANNs have shown powerful capabilities in prediction 
problems since they are firstly proposed. Recent breakthroughs 
in deep leaning networks [26], which are also ANNs but with 
multiple-layer architectures or deep architectures, have been 
proved to be successful in prediction [27] and other problems. 
In this paper, we propose a deep network structure which is 
composed of a stacked autoencoder (SAE) and a predictor to 
address the transit travel time prediction problem for TSP. The 
rest of the paper is organized as follows. In section II the 
proposed prediction model based on deep learning network is 
demonstrated. In section III the experiment procedure is 
described, including summary and analysis of the experiment 
results. Finally in section IV some conclusions are drawn. 

II. METHODOLOGY 

A. The structure of SAE 
A SAE, inferred from its name, is built by stacking a series 

of autoencoders (AEs). An autoencoder is a neural network 
which has the same number of nodes in the input and output 
layers. The simplest form is a NN with only one hidden layer. 
Its structure is shown in fig. 1. Given an input sample x, the AE 
first encodes it to its encoding representation y , as seen in 
equation 1. The encoding y is then decoded to the output z, as 
seen in equation 2. The encoding and decoding information is 
stored in matrices W1  and W2 . An AE’s responsibility is to 
ensure that the reconstructed output z is as similar to the input x 
as possible. 

 y (x) = f (W1 x + b) (1) 
 z (x) = g (W2 y + c)  (2) 
where W1 and W2 are the encoding and decoding matrices 
respectively, b and c are encoding bias vector and decoding 
bias vector respectively, f(x) and g(x) are the activation 
functions where the sigmoid function 1 / (1 + exp (-x)) is 
applied in this paper. 

 The AE can be trained using the conventional back-
propagation (BP) approach. Different from other NN training 
that requires both input data and labels (or target output) data, 
training of AE only requires input data since it takes each input 
sample itself as its label. The target is to minimize the 
reconstruction error L (X, Z) where 

  �L�X, Z� � 1
2
� �x(i)-z(i)��N

i=1 . (3) 
 In equation 3, X  is the set of N  input samples 
	x(1)
 �x(2)
 � 
 �x(N)�  and Z is the set of corresponding 
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Fig. 2.   The structure of an SAE with l layers. 

 
Fig. 3.    Combine an SAE and a predictor to form a deep network. 

Stacked 
Autoencoder

Predictor

reconstructed output 	z(1)
 �z(2)
 � 
 �z(N)�. And the notation 
�
 
represents the 2-norm of a vector. 

 An SAE is created by stacking a series of AEs to form a 
deep network following the consistency constraint that the 
number of nodes in the previous AE’s hidden layer must be 
equal to that in the next AE’s input layer. To be clearer, 
considering an SAE stacked by l AEs as shown in fig. 2. These 
AEs are stacked in such a way that, for each AE, the decoding 
part is dumped and its hidden nodes are connected directly to 
the hidden layer of the next AE acting as the next input layer. 

 Given a set of input samples, the training of an SAE is 
straightforward. Firstly the training data set is applied to train 
the first AE as described above such that W1

1 and W2
1 are 

obtained. Then for each of the ith (i = 2, 3, … , l) AE, the 
encoding of the (i-1)th AE yi-1 is taken as the input to train this 
AE such that W1

i and W2
i are obtained. In this way the training 

of the SAE is completed. 

B. SAE based Deep Network 
The reason why SAE is effective in data modelling is that it 

extracts and represents features underlying the data layer by 
layer. To perform the prediction functionality, a predictor is 
needed to be added on the top of the SAE to form a deep 
architecture model for travel time prediction. The structure of 
the proposed deep network is shown in fig. 3. In this paper, we 
choose the logistic regression model as the predictor. The 
predictor takes the output of the SAE’s last layer as its input 
and gives a prediction value corresponding to the input sample. 
But before this, the SAE together with the predictor needs to be 
trained again to fine-tuning the parameters of the deep 

network. The training procedure is based on the work of 
Hinton et al. [26] which can be summarized as following: 

1). Train the first layer as an autoencoder by minimizing 
the reconstruction error with the training data as the input. 

2). Train the ith (i = 2, 3, … , l) layer as an autoencoder 
taking (i-1)th layer’s output as the input. 

3). Iterate as in 2) until i = l where l is the total number of 
AEs in the SAE. 

4). Use the output of the SAE’s last layer as the input for 
the prediction layer, and initialize its parameters randomly or 
by supervised training. 

5). Fine-tune the parameters of all layers in a supervised 
way taking training data as the input and their labels as the 
target output. The fine-tuning process can be accomplished 
using the conventional back-propagation method with 
gradient-based optimization technique. 

 Steps 1 ~ 3 make up the pre-training procedure as described 
in the previous section. The target is to obtain reasonable initial 
values for the parameters of the SAE. Steps 4 ~ 5 retrain the 
SAE and prediction layer as a whole to fine-turn the 
parameters of the model. 

III. EXPERIMENTS 

A. Data acquisition 
The study site is a typical four-approach signalized 

intersection. Each approach has one right turn lane, two 
straight through lane and one left turn lane. The open end of 
each approach is connected to a zone numbered from 1 to 4 as 
traffic sources and sinks. We modelled the intersection in a 
microscopic traffic simulation software called Paramics [10], 
as seen in fig. 4. The signal cycle length is 112 seconds and it 
is split into four phases. The split length and allowed 
movements for each phase are depicted in table I. Since right 

 
Fig. 1.   The structure of a one-hidden-layer autoencoder. 
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turn movements are always allowed, right turn traffic is 
excluded for simplicity. The temporal span of the simulation is 
6 hours, from 6:00 a.m. to 11:00 a.m. Total traffic count of 
straight through and left turn vehicles for each approach is 
shown in table II. To simulate the temporal variance of traffic 
volume distribution, the total traffic count is released according 
to the distribution profile in table III. From this table we can 
see that nearly half (43%) of the vehicles are released during 
morning peak hours 7:00 a.m. ~ 9:00 a.m. 

TABLE I.  PHASES AND SPLITS OF THE STUDY INTERSECTION. 

Phase 
number 

Allowed 
movements 

Green length 
(s) 

Ampler length 
(s) 

1  30 3 

2  20 3 

3  30 3 

4  20 3 
* All right turns are always allowed. 

TABLE II.  TRAFFIC VOLUME FOR EACH OD PAIR (UNIT: VEHICLES). 

To 
From     Zone 1 Zone 2 Zone 3 Zone 4 Total 

Zone 1 0 0 3520 1200 4720 
Zone 2 1200 0 0 2400 3600 
Zone 3 3840 1200 0 0 5040 
Zone 4 0 3040 1000 0 4040 
Total 5040 4240 4520 3600 17400 

TABLE III.  TEMPORAL DISTRIBUTION OF TRAFFIC VOLUMES. 

Time 6:30 7:00 7:30 8:00 8:30 9:00 
C. P. (%) 3 9 18 30 42 52 

Time  9:30 10:00 10:30 11:00 11:30 12:00 
C. P. (%) 61 69 75 82 90 100 

 * C. P.: cumulative percentage. 

Various types of vehicle data can be collected through the API 
(Application Programming Interface) functions provided by the 
software. But only those that can be collected in real world 
should be used as experiment input considering practical 
application. Data are collected at two points in out simulations. 
The start point of data collection is triggered when a vehicle 
passes some place upstream to the intersection. At this point a 
part of data are collected including current time, passing speed, 
traffic flow and queue length of the lane. The determination of 
end point of data collection is a little different from previous 

studies. In previous studies, end point of data collection is 
triggered when a vehicle passes the stop line. But if the traffic 
light is red and there exists queues at the stop line when a bus 
arrives, it will not be able to cross the stop line until the next 
green phase comes and the queues are cleared. As we know, 
TSP operation is applied to ensure continues travelling through 
the intersection for buses. Thus in this study the end point of 
data collection is triggered when a vehicle stops at the tail of a 
queue because of red light, or when it passes the stop line 
without any stops because of green light. That’s why it’s called 
“continuous” travel time prediction. At this point, current time 
is recorded thus the travel time from the start point to the 
endpoint of data collection is inferred. This travel time is called 
continuous travel time (CTT) in this paper to differ from the 
definition of travel time in previous studies. All the data 
collected at the start and end point can be obtained by Global 
Positioning Systems (GPS) in real world. 

 The start point of data collection is set 250 meters upstream 
to the intersection which is nearly half the distance between 
two consecutive intersections. Since there are no stations 
between the upstream detector and the intersection, we assume 
that travel times of buses differ nothing from those of normal 
vehicles. Traffic data of all vehicles are collected to obtain a 
large data set. There are about 5,000 vehicles passing the study 
site in one simulation. Data are collected after 30 minutes 
warm-up period. To get enough number of samples we 
conducted 30 times of simulations with different random seeds. 
Total 15,0694 samples are collected and the data set is 
separated into a training set with 80% samples and a testing set 
with 20% samples. The training set is used to train the deep 
network model to get optimal structure and parameters. The 
testing set is used to test the performance of the trained model. 
We use mean absolute error (MAE) of prediction as 
measurement of effectiveness (MOE). It is defined as 

MAE�=� 1
n��ti�-�t�i�

n

i=1

 

where n is the total number of samples in testing set, ti and �t�i 
are the actual CTT and predicted CTT of the ith sample 
respectively. 

B. Experiments and results 
To identify variables affecting CTT, we start by using the 

most direct and intuitive variables firstly and gradually adding 
other variables that possibly related. Based on the most naive 
idea, the CTT can be calculated as 

��� � ������������������
������������ ��� � � ! "

�  

where l is the distance between the start point and the stop line 
which is constant, q and v are the queue length and travelling 
speed when the vehicle passing the start point respectively. As 
can be imagined, the travelling speed of a passing vehicle can 
not keep constant especially when getting close to the 
intersection. It is affected by many factors among which traffic 
density is one of the most relevant. Traffic density can be 
roughly expressed by traffic count which is denoted by c at a 
specific intersection approach. Thus we use q, v and c as the 
input of the proposed deep network model firstly (l is constant 
thus can be excluded in ANN based models). 

 
Fig. 4. The study site modelled in Paramics. 
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TABLE IV.  OPTIMAL STRUCTURES AND MAES FOR DIFFERENT GROUPS OF INPUT VARIABLES. 

# of 
AEs 

q, v, c q, v, c, s q, v, c, s, t q, v, c, s, f q, v, c, s, t, f 
Optimal structure MAE 

(s) 
Optimal structure MAE 

(s) 
Optimal structure MAE 

(s) 
Optimal structure MAE 

(s) 
Optimal structure MAE 

(s) 
1 [~, 8] 4.84 [~, 5] 4.25 [~, 6] 4.29 [~, 15] 4.29 [~, 19] 4.30 
2 [~, 9, 19] 4.83 [~, 3, 4] 4.19 [~, 10, 8] 4.21 [~, 5, 20] 4.18 [~, 8, 13] 4.22 
3 [~, 12, 7, 18] 4.84 [~, 17, 15, 10] 4.13 [~, 16, 10, 18] 4.17 [~, 17, 15, 5] 4.16 [~, 4, 12, 8] 4.17 
4 [~, 9, 5, 20, 9] 4.87 [~, 6, 6, 4, 7] 4.20 [~, 11, 12, 19, 6] 4.15 [~, 5, 7, 10, 19] 4.21 [~, 4, 19, 17, 10] 4.20 
5 [~,9,8,15,16,11] 4.86 [~,5,3,13,13,15] 4.16 [~,10,9, 9, 8, 12] 4.22 [~,15,6,7,17,15] 4.13 [~,11,12, 8, 5, 9] 4.15 

 
 Another problem is to determine the optimal structure of 
the deep network. Different combination of number of layers 
and number of nodes in each layer makes different structure of 
a deep network. In this paper, according to practical 
experience, we limit the number of AEs between 1 and 5, and 
the number of hidden nodes in each AE between 3 and 20. To 
avoid combination explosion problem in grid search approach 
which is too time consuming, for cases where the number of 
AEs is 2, 3, 4 and 5, the number of hidden nodes in each AE is 
randomly generated within its limitation for 300 iterations. 
That is, among all the different possible structures, exactly 18 
+ 300 * 4 = 1218 are randomly selected to conduct the 
simulations, and the structure with the least MAE is 
determined as the optimal structure for this group of input 
variables. For different groups of input variables, we perform 
the process above to determine the according optimal structure. 

According to out simulation results, for input of q, v and c, 
the least MAE is 4.83 seconds and the optimal structure is [~, 
9, 19] (see table IV), which means the deep network has two 
AEs stacked whose number of hidden nodes are 9 and 19 
respectively, and ~ represents the number of input variables.  

 As for CTT prediction problem, another important but 
easily ignored variable that affects vehicle travelling speed is 
the signal time when vehicle passes the start point. As can be 
imagined, if a vehicle passes the start point when the traffic 
light is red and the left red time is long enough, the vehicle has 
to decelerate and possibly stops advanced to the stop line. If a 
vehicle passes the start point when the traffic light is green and 
the left green time is long enough, the vehicle can keep going 
through the intersection without deceleration. If otherwise, i.e., 
the traffic light is turning from red to green or the opposite, the 
vehicle has to firstly stop and go or the opposite. We denote the 
signal time variable as s. It is divided by the signal cycle length 
to normalize it in range [0, 1]. This time s together with q, v 
and c is used as input. From the results in table IV we can see 
that the least MAE is 4.13 seconds and the optimal structure is 
[~, 17, 15, 10]. The MAE is decreased by 14.5% and this 
supports out opinion that the signal time when vehicle passes 
the start point is an import factor in CTT prediction problem. 

 Another two variables, traffic flow (denoted as f) and time 
of day (denoted as t) when the prediction is made, are also 
thought to be related to CTT. We conducted additional 
experiments with another three groups of input variables, i.e., 
with single t, single f, both t and f added each. The results are 
displayed in table IV. The overall least MAE is 4.13 seconds 
and the optimal structure is [~, 17, 15, 10] when the input 
variables are q, v, c, and s. The results also indicate that adding 
t or f as input variables can not actually improve the 

performance of CTT prediction which is uncommon with 
previous studies. This is possibly because of the fact that the 
experiment data in this paper are generated by traffic 
simulations. There are much less noise in the data. 
Relationships between different variables are determined and 
reflected finely in the data. For example, the characteristics of f 
is determined by t (according to the distribution profile) and t is 
reflected by signal time s, given the static simulation 
configuration. This makes the trial of adding t or f as input 
makes no difference with the prediction performance. 

TABLE V.  MAES AND MAPES VARY WITH PREDICTION SPATIAL SPAN. 

Distance (m) MAE (s) MAPE (%) 
150 3.72 28.49 
250 4.13 20.36 
350 4.53 18.36 
500 4.55 13.89 

1000 4.58 7.96 
1500 4.80 5.79 

 Although the MAE performance of the proposed mode is 
acceptable, some researchers may argue that how about the 
prediction performance of the mean absolute percentage error 
(MAPE). It is defined as 

MA#E�=� 1
n
� �$%�&�$'%�

$%
n
i=1 . 

Indeed, the resulting MAPE is between 20% ~ 26%, which is 
relatively high. This is because the start point is too close to 
the intersection (about 250 meters). According to the collected 
data, average CTT is 21.4 seconds. Little error in prediction 
contributes much to MAPE. We conducted another group of 
simulations varying the distance between the start point and 
the intersection from 150 meters to 1500 meters. The optimal 
structure [~, 17, 15, 10] is used and variables q, v, c, and s are 
taken as model input. Resulting MAEs and MAPEs are shown 
in table V. From the results we can see that when the 
prediction spatial span is long enough the MAPE performance 
of the proposed model is comparable with state-of-the-art 
prediction models. 

IV. CONCLUSIONS AND FUTURE WORK 
Transit signal priority is an effective strategy to promote 

vehicles’ pass through intersections. However, accurate 
prediction of bus arrival time remains a critical problem to be 
addressed. And this problem has not attracted too much 
attention from field researchers. We proposed a deep learning 
based model to predict the time it takes to travel some distance 
before the stop line continuously. Simulation experiments 
indicated that the MAE performance of the proposed model 
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can meet the requirement of practical application, and the 
MAPE performance is comparable with state-of-the-art 
prediction models if the prediction span is long enough. The 
results also revealed that the continuous travel time is highly 
related with the traffic light status when the prediction is 
made. The limitation is that the experiment data used in the 
paper is generated by traffic simulations instead of being 
collected in real world. This limits the explanation power of 
the results.  

For future work, the proposed model should be validated 
against data set collected in real world. Furthermore, the 
predictor applied in our paper is just a logistic regression 
model. Extending it to more powerful predictors may make 
further performance improvement. Relationships between CTT 
and other factors are also worth to be explored. For example, 
how can different phase plans affect prediction accuracy, how 
the prediction accuracy differs with different levels of traffic 
flow, i.e., high, medium and low flow, and how the spatial and 
temporal structures underlying in data change the prediction 
performance when the model is applied to multiple consecutive 
intersections. 

ACKNOWLEDGMENT  
This work is supported in part by NSFC (Natural Science 

Foundation of China) projects (71232006, 61233001, 61174172), 
Finnish TEKES program: From Data to Intelligence (D2I), and 
Chinese Dongguan’s Innovation Talents Project (Gang Xiong). 

 

REFERENCES 
 

[1] Smith, Harriet R., Brendon Hemily, and Miomir Ivanovic. "Transit 
signal priority (TSP): A planning and implementation handbook." 
(2005). 

[2] O’Brien, W. “Design and Implementation of Transit Priority at 
Signalized Intersections: A Primer for Transit Managers and a Review 
of North American Experience”. Canadian Urban Transit Association 
STRP Report 15, Toronto, Canada, 2000, p.31. 

[3] Li, Jie, et al. "Predictive Strategy for Transit Signal Priority at Fixed-
Time Signalized Intersections." Transportation Research Record: 
Journal of the Transportation Research Board 2311.1 (2012): 124-131. 

[4] Tan, Chin-Woo, et al. "Prediction of transit vehicle arrival time for 
signal priority control: Algorithm and performance." Intelligent 
Transportation Systems, IEEE Transactions on 9.4 (2008): 688-696. 

[5] Mori, Usue, et al. "A review of travel time estimation and forecasting for 
Advanced Traveller Information Systems." Transportmetrica A: 
Transport Science ahead-of-print (2014): 1-39. 

[6] Schmitt, Erick J., and Hossein Jula. "On the limitations of linear models 
in predicting travel times." Intelligent Transportation Systems 
Conference, 2007. ITSC 2007. IEEE. IEEE, 2007. 

[7] Hoffmann, G., and J. Janko. "Travel times as a basic part of the LISB 
guidance strategy." Road Traffic Control, 1990., Third International 
Conference on. IET, 1990. 

[8] Wunderlich, Karl E., David E. Kaufman, and Robert L. Smith. "Link 
travel time prediction for decentralized route guidance architectures." 

Intelligent Transportation Systems, IEEE Transactions on 1.1 (2000): 4-
14. 

[9] Halati, Abolhassan, Henry Lieu, and Susan Walker. "CORSIM-corridor 
traffic simulation model." Traffic Congestion and Traffic Safety in the 
21st Century: Challenges, Innovations, and Opportunities. 1997. 

[10] Cameron, Gordon DB, and Gordon ID Duncan. "PARAMICS—Parallel 
microscopic simulation of road traffic." The Journal of Supercomputing 
10.1 (1996): 25-53. 

[11] Ben-Akiva, Moshe, et al. "DynaMIT: a simulation-based system for 
traffic prediction." DACCORS Short Term Forecasting Workshop, The 
Netherlands. 1998. 

[12] Rice, John, and Erik Van Zwet. "A simple and effective method for 
predicting travel times on freeways." Intelligent Transportation Systems, 
IEEE Transactions on 5.3 (2004): 200-207. 

[13] Yang, Jiann-Shiou. "Travel time prediction using the GPS test vehicle 
and Kalman filtering techniques." American Control Conference, 2005. 
Proceedings of the 2005. IEEE, 2005. 

[14] Yang, Jiann-Shiou. "A study of travel time modeling via time series 
analysis." Control Applications, 2005. CCA 2005. Proceedings of 2005 
IEEE Conference on. IEEE, 2005. 

[15] Wu, Chun-Hsin, Jan-Ming Ho, and Der-Tsai Lee. "Travel-time 
prediction with support vector regression." Intelligent Transportation 
Systems, IEEE Transactions on 5.4 (2004): 276-281. 

[16] Park, Dongjoo, and Laurence R. Rilett. "Forecasting freeway link travel 
times with a multilayer feedforward neural network." Computer Aided 
Civil and Infrastructure Engineering 14.5 (1999): 357-367. 

[17] Li, Chi-Sen, and Mu-Chen Chen. "Identifying important variables for 
predicting travel time of freeway with non-recurrent congestion with 
neural networks." Neural Computing and Applications 23.6 (2013): 
1611-1629. 

[18] Dharia, Abhijit, and Hojjat Adeli. "Neural network model for rapid 
forecasting of freeway link travel time." Engineering Applications of 
Artificial Intelligence 16.7 (2003): 607-613. 

[19] Dia, Hussein. "An object-oriented neural network approach to short-
term traffic forecasting." European Journal of Operational Research 
131.2 (2001): 253-261. 

[20] Park, Dongjoo, Laurence R. Rilett, and Gunhee Han. "Spectral basis 
neural networks for real-time travel time forecasting." Journal of 
Transportation Engineering 125.6 (1999): 515-523. 

[21] Xia, Jingxin, Mei Chen, and Wei Huang. "A multistep corridor travel-
time prediction method using presence-type vehicle detector data." 
Journal of Intelligent Transportation Systems 15.2 (2011): 104-113. 

[22] Zheng, Weizhong, Der-Horng Lee, and Qixin Shi. "Short-term freeway 
traffic flow prediction: Bayesian combined neural network approach." 
Journal of transportation engineering 132.2 (2006): 114-121. 

[23] Liu, Hao, et al. "Predicting urban arterial travel time with state-space 
neural networks and Kalman filters." Transportation Research Record: 
Journal of the Transportation Research Board 1968.1 (2006): 99-108. 

[24] Zhang, Yunlong, and Hancheng Ge. "Freeway Travel Time Prediction 
Using Takagi Sugeno Kang Fuzzy Neural Network." Computer
Aided Civil and Infrastructure Engineering 28.8 (2013): 594-603. 

[25] Lee, Jinwoo, et al. "Advanced transit signal priority control with online 
microsimulation-based transit prediction model." Transportation 
Research Record: Journal of the Transportation Research Board 1925.1 
(2005): 185-194. 

[26] Hinton, Geoffrey, Simon Osindero, and Yee-Whye Teh. "A fast learning 
algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-
1554. 

[27] Lv, Yisheng, et al. "Traffic Flow Prediction with Big Data: A Deep 
Learning Approach." 

 

528


