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Abstract. Heterogeneous and resource-constrained sensors, computational and 
communication latencies, variable geospatial deployment and diversity of 
applications set challenges for sensor network middleware. RESTful 
architecture principles have been widely applied in middleware design. The 
new Computational REST architecture offers additional set of principles. In 
Computational REST, computations are seen as resources and interactions are 
conducted as computational exchanges. In this PhD thesis work, these 
principles are studied and elaborated further in the context of sensor network 
middleware. Middleware and system component prototypes are developed, 
evaluated and utilized by field trials in real-world settings. As a result, new 
knowledge is generated of ubiquitous sensor network middleware design and 
dynamically distributing data processing computational load in resource-
constrained sensor networks. 
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1 Introduction 

Information and communication technology advancements accelerate the 
development and deployment of sensor networks, which are being utilized to collect, 
store and share information of different phenomena within environment and society 
today. Advantages of wireless sensor networks (WSN) over fixed sensor networks 
include dynamic deployment and changeable network topology [1]. Suitable 
platforms for heterogeneous sensor nodes include smart phones, PDAs, PCs, 
appliances in households, mobile data terminals and vehicle computing platforms. 
Also devices in public infrastructure, such as traffic signal poles, could be used as 
sensor node platforms. However, these devices have constrained resources in terms of 
computation, communication, memory, and battery life [1]. At the server side of the 
sensor networks, the sink nodes can be local or remote servers and even cloud 
computing platforms having virtually unlimited resources for data processing and 
storage.  

Internet of Things interconnects everyday objects by using Internet protocols. The 
objects are sensors, devices and platforms, which then become Smart Things.  Internet 



of Things applications then utilize propriety communication protocols layered on top 
of Internet protocols such as TCP or UDP. The Web of Things has the advantage of 
using established Web standards with devices, which can have embedded Web 
servers running and integrate with any content from the Web [2]. The loosely-coupled 
nature of the Web and reusable common tools such as browsers, languages and 
interaction techniques can be applied to the real-world objects [2]. Along with the 
Web of Things, RESTful [3] architecture has been introduced and its principles are 
widely applied to the context of low-power WSN. RESTful architecture provides 
decentralized WSN with unified view of components, described for example in [2, 4]. 
Recent addition to the REST principles are the Computational REST (CREST) 
principles, suggested in [5]. The goals of CREST are the distribution of services away 
from the Web server and composition of higher-order services from established lower 
level services. 

In our earlier research, we developed a sensor network middleware for traffic 
related sensor data collection and processing [6]. The system utilizes mobile phones 
with integrated sensors and external public services in Internet as data sources, using 
HTTP for data dissemination. This data is processed in real-time and results are 
visualized in an annotated map in a web browser. Moreover, we have developed a 
system for wireless monitoring of energy consumption of everyday electrical 
appliances in private households [7]. The wireless sensor nodes utilize 6LoWPAN 
protocol stack and HTTP for data dissemination to a centralized server, atop local IP-
based  panOULU  WSN  deployment.  In  the  server,  data  can  be  visualized  in  a  web  
browser and metrics of energy consumption are collected. Currently, we are 
advancing the panOULU WSN by planning new sensors, such as environmental 
sensors, and implementing REST interfaces for data dissemination in the system, 
internally between services and sensors, and externally with client applications.  

This PhD thesis work continues our work on sensor data processing middleware. 
Based on our earlier research [6, 7], we have identified the following topics requiring 
further research: enabling seamless collection and processing of data in the sensor 
nodes, utilization of multiple heterogeneous data sources, data dissemination and 
persistent data storage, efficient distributed data processing at different levels of 
services and in multiple stages, data processing capabilities conditional on the data 
type,  and  controlling  and  monitoring  the  system  behavior.  A  related  issue  is  the  
lifespan of data, from milliseconds to years, within the applications where data type, 
quality and quantity are variable [6]. Studying these topics helps to develop 
middleware that can disseminate data in real-time, has low computational latencies, 
has energy efficient components, persistent data storage mechanism and has sufficient 
privacy and security features. Also, in this developed middleware, loosely-coupled 
architecture follows from the heterogeneous sensors, variable geospatial deployment 
and diversity of applications. 

The rest of this paper is organized as follows. In Chapter 2, related work is given, 
Chapter  3  presents  the  PhD  thesis  work  in  more  detail  and  Chapter  4  presents  the  
discussion. 



2 Related Work 

In the RESTful architecture [3], clients connect to servers to access resources. A 
resource is any component or information that needs to be used and addressed. 
Resources are identified with URIs in well-known identification scheme and should 
be available through uniform interface, such as HTTP. Here, simple HTTP operations 
are used: GET, PUT, POST and DELETE. Interactions must be stateless, so that all 
the information needed to fulfill request must be part of the request. Services can be 
utilized through hypermedia links in resources or service discovery can be made using 
discovery protocols, described for example in [2, 4]. “Smart Gateways” [2] in the 
sensor network can also provide composition of low-level services as a higher-level 
service and in addition can be used for abstracting a non-RESTful service. This is 
useful for sensors which don’t have enough capabilities to run a Web server. REST 
offers several advantages over traditional approaches [2, 4]. Interfaces in REST are 
simple and uniform. Implementations are light-weight and easily scalable as 
components can be completely independent. Lastly, all features already in HTTP are 
available for use. 

In CREST [5], computations are seen as resources and interactions are conducted 
as computational exchanges. Computational exchanges are carried out in the form of 
continuations. A continuation is representation of the execution state of a 
computation, even including the required data, in a way it can be later resumed. 
CREST offers several extensions to the architectural principles of REST: 1)  resource 
is an abstraction of a computation and named by URL, 2) representation of a resource 
is a program, closure, continuation or binding environment plus the metadata 
describing it, 3) each interaction contains all information necessary to complete the 
request, 4) few primitive operations are always available but resource specific 
operations are allowed for creating new representations, and 5) presence of  
intermediates is promoted for use. CREST URLs follow the structure: 
//server/url0/…/urln-1/data/ and are not intended to be human readable. The 
interpretation  of  CREST  URLs  is  up  to  the  binding  environment  and  URLs  can  be  
freely modified by intermediates. A single service can be exposed through a number 
of URLs offering multiple perspectives to the computation which can be even 
recursive. In [8], the CREST architectures are taken one step further. As CREST 
component peers can be seen as clients and servers simultaneously, the concept of 
layers in middleware could be replaced with symmetric computational exchanges. 
Layers and services are a matter of convenience, perspective and scope [8]. This 
could question the concept of layered middleware altogether. 

A number of sensor network middleware has been proposed in literature. The 
Devices Profile for Web Services suggested in [9] offers service-oriented architecture 
(SOA) middleware for WSN’s. Middleware components run RESTful or optimized 
web service functionality to interconnect sensor nodes. Nodes connect to the network 
by plug-and-play, announce their presence and offered services in the network and 
publish/subscribe events to communicate. However, the SOA implementations can be 
too heavy for resource-constrained devices and do not truly expose the Smart Things 
functionality to the Web [2]. Comparisons made in [10] suggest that RESTful web 
services outperform SOAP based approaches in both request completion times and 



power consumption. Another result is that when considering IPv6 addressing, request 
completion times in IPv6 are longer than in IPv4.  

The DIGIHOME WSN middleware [4] for home monitoring systems supports 
REST interfaces for heterogeneous sensor nodes and computational entities, standard 
discovery and communication protocols, multiple resource representation formats and 
event-based reasoning. For the middleware, the authors introduce software connector 
encapsulation providing interactions between components, invocation, persistency 
and messaging. Component communication is event-based, events can be local or 
system-wide and event processors can trigger actions on nodes based situation 
changes. Default interaction protocol is HTTP because of its prevalence, also Web 
intermediates are used to modify data in transmission. 

Recent example realizations of Web of Things were demonstrated in [2], where 
real-world devices with embedded HTTP servers, and Smart Gateways not supporting 
IP or HTTP, were implemented. Web mashups accessed the devices through RESTful 
interface, mapping the native requests, based on Bluetooth, for example, to URLs. 
The authors demonstrated mashup from the user interface in the computer to a 
physical device and mashup from a physical device to a device. Proxy servers were 
used for dynamically discovering mobile devices as sensor nodes and disseminating 
requests to them.  

 In the literature, other solutions have been described for these challenges. Sensor 
network can be “wired” for a task by configuration service or files. This wiring can 
also be routing or reasoning-based. For service discovery, protocols such as SLP, 
service discovery layers or agents can be used. For code migration, bytecode with 
virtual machines, migration agents or native code have been utilized. Possible data 
formats and representations include ASCII, JSON, HTML, XHTML, XML, binary 
encoded XML and even Java object serialization [2, 4, 10]. Built-in content 
negotiation feature in HTTP also simplifies the task of delivering data between 
components. 

3 PhD Work 

The objective of this PhD work is the development of scalable sensor network 
middleware and data processing architecture. The main features of the system will be 
1) uniform interfaces for heterogeneous data sources and data dissemination between 
system components, 2) dynamic deployment of system components and 3) methods 
for distributing dynamically computational load in the sensor network. These features 
need to contribute towards energy efficiency. To achieve this, the granularity of 
system components needs to be studied: what are the component capabilities and what 
constraints sensors, data and services set in the system. Monitoring and dynamic 
controlling of the system will be studied, for example, by elaborating further the 
dynamic partitioning problem described in [11]. Tradeoffs between system features 
and requirements are inevitable, following from the variable device capabilities, 
system component configurations and diversity of applications. Another related open 
research question is the optimal number of sensors for an application.  



To the best of our knowledge, CREST has not yet been utilized in the context of 
sensor  networks.  In  CREST,  the  origin  server  may  not  be  responsible  for  all  the  
computations as code migrates, thus the issue of computational latency is an 
important question. The system should have mechanisms such as concurrent 
processing and cost functions for minimizing the latency. One possible solution for 
this is the reuse of previously computed continuations [5]. To demonstrate how 
CREST can be applied in this work, a simple example architecture for an 
environmental service is sketched in  Fig 1. Clients can access a Web mashup called 
/environment, integrating environmental sensor data with local weather data and 
visualizing it atop a map. An intermediate, called /sensors, is used to access the actual 
sensors. The mashup sends GET request with location parameters and a computation 
to the /sensors. This intermediate locates the corresponding sensor node and sends 
GET request to receive data from the node. Then the data is added to the URL, which 
is disseminated further to a resourceful sensor node for task completion (for 
calculating average in this case). When finished, computation results are returned to 
the mashup. In case this computation has already been partly computed, say weekly 
average till the previous day, a continuation can be used to reduce amount of required 
data and computational load. Also, the usage of intermediate is not required, but is 
used as an example to abstract sensors. In real-world, the intermediate could be for 
example a sink node or an edge router. The Web mashup /environment can itself be a 
continuation.  

The middleware will be evaluated by having field trials in real life settings within 
the panOULU WSN and by using applications developed in research projects. In the 
evaluation, we are looking for answers to the following issues: 1) how much 
communication overhead is caused by the CREST principles and distributed 
processing, 2) are task or data query completion times reduced, 3) is the amount of 
data transferred in the network reduced and 4) can we reduce energy consumption in 
the resource-constrained parts of the network, such as sensor nodes. This work will be 
carried out in iterative manner based on literature reviews, implementation of 
middleware and component prototypes, tests and by collation of acquired experiences. 

This PhD work generates new knowledge of ubiquitous sensor network 
middleware design and dynamic distribution of data processing load in resource-
constrained sensor networks. Collected sensor data and processing results can be 

 
 Fig 1. An example CREST architecture for an environmental monitoring system. 



made available immediately as RESTful web services and new applications can be 
deployed to use since the infrastructure is ready. Possible applications in the system 
include promoting sustainable energy consumption in private homes, real-time traffic 
data services integrated with people’s movements and other environmental issues in 
urban areas can be addressed.  

4 Discussion 

Expected benefits of utilizing CREST principles with sensor networks include: 
reusable data and computations in the form of continuations, efficient usage of 
resources with load balancing and distributed processing, easy context-switching and 
simplified deployment of tasks, services or resources to the network simultaneously 
promoting scalability [5]. Even service discovery mechanisms may not be needed at 
all in the system and it is possible to describe binding environments in the URL [8]. 
Concerning the given characteristics and requirements from Chapter 1, the proposed 
middleware is loosely-coupled and allows dynamic variable geospatial deployment of 
system components. How the code migration is actually implemented is an open 
question, but a number of techniques have been proposed in the literature. 
Heterogeneous sensors can be used, provided that proxies or intermediates are 
developed, especially for resource-constrained parts in the network. Constrained 
Application Protocol (CoAP) [12] could be one solution to realize this kind of system, 
being a web protocol optimized for constrained environments and having block 
transfer capability for larger amounts of payload in the messages [13]. For privacy 
and security issues, HTTP already provides basic mechanisms and these can be 
studied further. Interesting question is the role of the middleware which can be 
diminished altogether by these features, as suggested in [8].  

However, REST is not perfect solution for sensor networks. According to [2], 
REST architectures are not very suitable for real-time information and event-based or 
streaming applications because of HTTP limitations. Computational latencies in 
REST and communication overhead caused by HTTP are inevitable issues that need 
to be studied. One example of such systems is the collection and analysis of traffic 
data provided by mobile devices, where real-time communication needs to be 
encapsulated with Web intermediate for higher-level services. Possible solution for 
this would be real-time “streaming channel” to/from the entities in traffic, controlled 
through REST interface operations and perhaps utilizing CoAP for data 
dissemination. It is currently unknown how data will be stored in the system for long 
term analysis, but this issue is also application-specific. Additionally, CREST URLs 
can be of size of ten’s of megabytes [5], which is not very suitable for low-power 
resource-constrained sensor nodes. This could be one serious limitation in the system, 
but  it  can  be  addressed  by  using  intermediates  or  proxies.  To  what  extent  CREST  
works with low-power sensor nodes remains an open question.  

Based on previous research, the sensor network infrastructure in urban areas can be 
utilized to collect information and create new services in public and residential areas. 
The middleware developed in this PhD work provides a platform for these services as 
well as contributes towards ubiquitous computing and Web of things.  
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