
Lightweight Service-Based Software Architecture

Mikko Polojärvi and Jukka Riekki

Intelligent Systems Group and Infotech Oulu
University of Oulu, Oulu, Finland

{mikko.polojarvi,jukka.riekki}@ee.oulu.fi

Abstract. This article describes the Simple Event Relaying Framework
(SERF), a novel service-based software architecture designed especially
for resource constrained settings and facilitated cooperation between ap-
plications. The proposed prototype framework aims at utilizing publish/
subscribe and peer-to-peer, technologies that are usually encountered only
in higher level inter-device networks, inside the software architecture of in-
dividual applications in very simple form. The idea is to introduce a simple
core architecture on which more advanced features can be built on. The
research will be conducted primarily by creating prototype solutions to
real life problems and learning from the experience.

1 Introduction

One trend in information technology nowadays is that modern mobile devices
are more and more composed of larger number of small applications. One smart
phone might easily contain over one hundred user-installed applications. We can
consider the applications networked to some degree, but often they are still quite
separated from each other. They seldom communicate or cooperate with each
other, and even if they do, it is usually done only in the way the application
developers have specifically envisioned.

This does not need to be limited to the software inside a single mobile device.
For example, in Smart Space research everyday environment is envisioned as
full of networked smart objects, or miniature computers or sensors that fulfill
a very specific purpose, for example detecting the user’s presence in a room.
This information alone is not useful alone, it needs to be combined with an
application that can use the information in some way, for example by turning
the lights on. In the same way as above, it is neither possible for the smart object
designers to know all the ways the information could be utilized, nor possible
for the application designers to know all the future devices that could provide
the information. This is a problem that limits the usefulness of the smart space
applications and objects.

We could argue same applies to individual applications as well. Applications
usually consist of a number of smaller software components, and if we consider
memory references, function calls etc. as links, we can consider the software
components networked. While running, these components do lot of information

M. Rautiainen et al. (Eds.): GPC 2011 Workshops, LNCS 7096, pp. 172–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Lightweight Service-Based Software Architecture 173

processing. If the application developer cannot think of a reason to expose the re-
sults of this processing outside, the results probably will not be available to other
applications, since building for such flexibility usually also consumes resources.

Therein lies great potential for development. If software components could be
made to open up more efficiently for cooperation with each other, it would open
the way for using applications in many ways not originally planned for. In order
to allow such unplanned cooperation between applications, the internal state of
the applications needs to be implicitly exposed outside the application.

One solution could be to make even the smallest component loosely coupled
and communicate using the publish/subscribe paradigm. Each component would
have clear cut purpose in the application and depend very little or not at all on
other components in order to fulfill the purpose. The components would send (i.e.
publish) messages around so that only the components that have expressed in-
terest (i.e. subscribed) in a certain message type end up receiving them. Senders
would not care who they are sending to, and receivers would not care where they
get the messages from, as long as the content of the message is interesting. As a
result, senders and receivers could be freely added, removed, moved or modified
without breaking the whole system, allowing the components to cooperate with
each other in unforeseeable ways.

Naturally, within the idea there are many challenges, but first and foremost
is the question of how to organize the communication between the components
in practice? The QoS requirements for communication at different levels (inside
an application, between applications, between devices etc.) vary greatly. There
already exist numerous solutions utilizing publish/subscribe, but most existing
solutions are aimed at large scale inter-device networks and often assume a
single mobile device as the smallest unit in the network of components. Many
publish/subscribe solutions are simply too heavy computationally for use in
lower level communications, services and algorithms. This is further aggravated
by the fact that in mobile devices, power, storage and computing resources are
considerably limited. Other challenges are discussed later.

This is where my doctoral thesis research comes in. The research investi-
gates the possibility of utilizing publish/subscribe in considerably lower level
settings, with the aim of allowing unplanned cooperation between components.
Towards this purpose I have developed a novel component based general pur-
pose software framework prototype called the Simple Event Relaying Framework
(SERF). SERF is a continuation of my earlier work, the Ideasilo framework pub-
lished in [1]. This particular prototype concentrates in the software architecture
inside individual applications. In this paper I will explain the detailed design,
experiences received thus far, research methods and expected results of my work.
But first, I will present a review about other related solutions.

2 Related Work

Service Oriented Architecture (SOA) is one prominent modern tool utilizing
loosely coupled modules. In fact, the current SERF prototype has been largely



174 M. Polojärvi and J. Riekki

inspired by the principles of SOA [6]. Most of the principles have been adopted
unchanged or in slightly modified form. However, some principles have been
discarded in order to accommodate usage in resource constrained settings.

Android’s Intent system [3] is also meant to facilitate inter-component cooper-
ation within a single mobile device. An intent is a passive data structure holding
an abstract definition of an operation to be performed or a description of some-
thing that has happened. In case a component interested in the service is not
loaded by the time the intent is executed, the system automatically instantiates
them.

Among experimental solutions, Network on Terminal Architecture (NoTA)
[4], developed in the Nokia Research Center and first released in 2005, bears
some similarities with SERF. Both are have a similar purpose (facilitate soft-
ware development) and solution principle (use SOA in device level settings).
The Smart-M3 [5] project is similar in the sense that it also aims at software
cooperation at multiple levels, but concerns itself mostly on inter-device part.
Both NoTA and Smart-M3 differ greatly from SERF in design, and neither use
publish/subscribe in messaging by itself.

3 Proposed Solution

As stated before, SERF is designed for investigating the possibility of utilizing
publish/subscribe also within low level software components. The current pro-
totype concentrates primarily in resource-wise the most demanding part, com-
munication between components inside individual applications, while keeping a
secondary focus on inter-application and inter-device communication. Therefore
the design concentrates in providing the communication framework with as few
resources as possible.

SERF addresses the challenges of designing general purpose software frame-
works by making very few assumptions about the used technologies or appli-
cations built upon it, and not trying to do too much. In fact, in my approach
SERF aims at providing just a conceptual answer the question: ”which message
should be delivered to which components?”

The SERF research is based on the following hypotheses:

1. Working and useful applications can be formed using primarily loosely cou-
pled components with less resources than creating every component from
scratch.

2. Higher level framework functionality can be implemented as applications on
top of a very simple core framework.

3. It is possible for different applications to cooperate in new ways that have
not been taken into account at design time.

4. Lightweight messaging architecture can offer significant reductions in com-
putational workload as compared to more feature-rich solutions.

The design of the first prototype of SERF is described in detail at [2]. Although
the current solution features an upgraded scheduling solution, most of the de-
sign principles and implementation still apply to the current prototype. A brief



Lightweight Service-Based Software Architecture 175

summary of the design is presented next. The main principles of the current
approach can be summarized as follows:

1. The framework is kept as simple as possible.
2. The main idea of the framework is conceptual and platform-independent.
3. An application is composed of a many small components that send messages

to each other.
4. The components form an acyclic network with each other.
5. The framework will route messages from the sender to the recipient(s) by the

topic of the message. The framework will not concern itself with the identity
of the sender of the recipient.

6. Messages will not describe what should happen in the application. Instead,
the messages simply describe what is happening at the moment. Other com-
ponents may then decide how to act on the information.

7. The framework concentrates on keeping the overhead of routing the messages
from senders to receivers at minimum.

Figure 1 presents an example about the current component structure. The struc-
ture consists of event processors, routers and filters, and thread schedulers. Event
processors (P1 − P5 in the figure) can be understood as the application compo-
nents mentioned earlier. These are developed by the application designers using
the framework. Real applications are formed by having them communicate with
each other. They are basically pieces of code that generate and receive mes-
sages, the framework being responsible for executing the event handling code
when necessary.

Fig. 1. SERF routing example



176 M. Polojärvi and J. Riekki

Routing nodes (the N :s) in figure 1 are responsible for routing the messages
to processors and other routing nodes. These are all identical to each other, al-
though their configuration may differ. When necessary, the thread scheduler (the
surrounding big box) assigns a thread to work at each node demanding attention.
The thread routes messages, executes processors and returns to wait for more
work on other nodes. The solution ensures that all processors attached to the
same node are always executed in the same thread (as indicated by the Thread
Domain box around each node). One important aspect of this solution is that
this kind of structure supports multi-processor architecture in the sense that it
encourages dividing the application into clear cut components. Each component
can be easily assigned to be worked on by a separate processor core, and the
number of worker threads can be easily adjusted. The event-based messaging
design also inherently reduces many concurrency problems usually associated
with thread-based programming.

The event filters (the diode signs) in figure 1 are responsible for handling the
actual routing of messages. Each link from router to router or router to processor
contains two filters, one for each direction. Every message contains meta infor-
mation about the topic of the message, where a single topic is represented with a
single bit in a particular position in an array of bytes. This way the demands of
a complete branch of nodes in the network can be represented in compact form
with byte arrays and evaluated efficiently with binary operators. These filter
evaluations are repeated once for each link in a routing node. Because in SERF
the routing node network cannot contain loops, this potentially results in larger
logical distance between the nodes as compared to cyclic networks. However, if
the overhead of a single filter check and event transmission can be kept suffi-
ciently low, the overhead may still be less than by using more complex routing
solutions.

Obviously a single bit cannot carry much information, just whether a partic-
ular topic applies to the event in question or not. What a particular topic means
is not modeled in any way in the framework. Instead the framework relies on the
designers agreeing on the significance of each given topic. An important point
here is that this solution is essentially a tradeoff of features for performance. It is
not intended to be perfect solution for every given situation in itself. There are
indeed many cases where this kind of messaging cannot be considered sufficiently
scalable, robust or flexible. However, we hypothesize that this kind of solution is
still able to support a layer of services offering widely enhanced features, built
on top of the very simple core framework. How this can be done efficiently is
another promising topic for research.

An important notion here is that although the current SERF prototype pro-
vides a simple key-value structure for the content of the messages, SERF actually
does not assume any particular structure for the contents. Therefore the appli-
cation designers are free to use any structure that can be transformed into serial
form, although communicating components will need to know the structure in
order to be able to access the contents.



Lightweight Service-Based Software Architecture 177

4 Methods

In the next phase of my research I intend to evaluate the possibility of utilizing
publish/subscribe in low level settings by searching answers to the following
research questions:

1. What kind of advantages can be achieved by applying lightweight pub-
lish/subscribe in low-level settings?

2. What disadvantages does the above have? In order to achieve the benefits,
what compromises must be made?

3. On what kind of application areas will the advantages outweigh the disad-
vantages?

In order to provide the answers, my approach is primarily based on experiment-
ing with prototypes with the aim of gaining broadened understanding on using
SERF in practice. The plan is to iterate the following workflow:

1. Based on literature review on the theory of software frameworks and mes-
saging, and the experiences gained from the previous steps, develop and
optimize the SERF framework.

2. Discover a real life problem where the current SERF framework could be
utilized to a desirable effect. Here the choice of the problem area does not
need to be limited only to resource constrained settings, as it is valuable to
study how well SERF performs also in less resource constrained settings.

3. Study the theory related to the problem area at hand and different kinds of
possible solutions.

4. Develop a prototype solution to the aforementioned real life problem using
SERF and software components required by the application, preferably ones
already created earlier in the workflow. Also, when possible, a second solu-
tion using another feasible competing solution should be implemented for
comparison.

5. Evaluate the prototype quantitatively by benchmarking and qualitatively
by user tests, compare the results to competing solutions and publish the
findings.

This plan provides good opportunities for interdisciplinary research collabora-
tion. Moreover, the workflow itself serves as a sanity check on the main hy-
potheses presented earlier. The workflow also works as an experiment on how
easily software components made earlier in the workflow can be utilized in later
projects without essentially modifying the components and without knowing
what a given component is going to be used for later.

As SERF is still in prototype stage, there are still many possibilities for fur-
ther improvement. A fundamental question here is deciding which improvements
should be implemented in the framework itself and which in the application
layer, and which improvements rejected outright. Among others, the following
possibilities will need consideration:



178 M. Polojärvi and J. Riekki

1. Similar to Android, the framework could support instantiation of event
routers and processors when needed.

2. The framework could support mobile software components, i.e. pieces of code
that are sent to remote devices for execution.

3. The event filtering solution could be still improved. Especially, utilizing
Bloom filters [7] instead of byte arrays in the filtering solution could offer
performance advantages.

5 Expected Results

There are many challenges associated with intra device software ecosystems,
some of which I do not expect to be discovered without experimentation. For
example, it can be expected that some information must not leak outside known
application boundaries. Considering the idea of the framework is to share infor-
mation implicitly, how should this be solved? Another challenge is to find a way
to ensure that even with groving number of applications, the routing solution
scales and individual applications do not conflict with each other. Managing mul-
tiple software components answering the same service request may also present
a problem.

Although a working software framework prototype has already been devel-
oped, my research is still on relatively early stages, so the final course for the
research is not yet completely fixed. The work presented in this paper can be
understood as the first phase that will provide understanding on the challenges
associated with using SERF for intra-application communication. In the current
plan, the second phase will concentrate on studying the inter-application part.

In short, the ultimate aim of the research is to gain heightened understand-
ing on the challenges associated with unplanned cooperation among software
components. Secondarily, the aim is to provide a feasible and working software
framework prototype for further work on the topic. Third, the described work-
flow will provide a number of smaller prototype applications, each providing
insight into the application area in question.

6 Conclusion

In this article I have presented my doctoral thesis topic: SERF, a simple service-
based software framework utilizing publish/subscribe in low level settings. The
purpose of the framework is to facilitate cooperation between individual appli-
cations and software components. I have presented my reasoning why a simpler
messaging framework is needed. I have described the current framework pro-
totype and explained the reasons for main design principles. I have explained
my plan for continuing the work on developing and evaluating the framework.
Finally, I have described my expectations for the result of my research.



Lightweight Service-Based Software Architecture 179

References

1. Polojärvi, M.: Application framework for utilizing RFID information Master’s thesis,
University of Oulu, Oulu, Finland (2008) (in Finnish)

2. Polojärvi, M., Riekki, J.: Experiences in Lightweight Event Relaying Framework
Design Proceedings of FutureTech-10, Busan, Korea (2010)

3. Android, Developer Guide: Intents and Intent Filters,
http://developer.android.com/guide/topics/intents/intents-filters.html

4. Nokia Research Center, NoTA Architecture,
http://www.notaworld.org/nota/architecture

5. SourceForge, Smart-M3, http://sourceforge.net/projects/smart-m3/
6. Thomas Erl, The Service-Orientation Design Paradigm,

http://www.soaprinciples.com/p3.php

7. Broder, A., Mitzenmacher, M.: Network Application of Bloom Filters: A Survey
Internet Mathematics, vol. 1(4), pp. 485–509

http://developer.android.com/guide/topics/intents/intents-filters.html
http://www.notaworld.org/nota/architecture
http://sourceforge.net/projects/smart-m3/
http://www.soaprinciples.com/p3.php

	Lightweight Service-Based Software Architecture
	Introduction
	Related Work
	Proposed Solution
	Methods
	Expected Results
	Conclusion
	References




